Skip to main content

Transgene Site-Specific Integration: Problems and Solutions

  • Chapter
  • First Online:
Site-directed insertion of transgenes

Part of the book series: Topics in Current Genetics ((TCG,volume 23))

Abstract

Integrative gene transfer performed by viral and non-viral vectors have demonstrated their effectiveness, but have been linked to some adverse events, such as clonal expansion and tumorigenesis. These observations have raised serious concerns about the safety of gene transfer methods, and have led to many attempts to find new solutions. In this chapter, we summarize the major problems encountered with viral and non-viral-vectors and various ways of avoiding insertional mutagenesis, the induction of innate immunity and transgene silencing are described. We also list the main strategies for optimizing vector architecture so as to ensure safe and long-term expression of the transgene. Several new approaches have succeeded in targeting transgene integration to a specific locus using recombinases, homing endonucleases, zinc finger nucleases, integrases and transposases or a combination of them. Here, we report various criteria that can be used to define what is a good insertion site in the human genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADA:

Adenosine deaminase deficiency

AAV:

Adeno-associated virus

CIS:

Common insertion site

DBD:

DNA binding domain

DSB:

Double-strand break

dsRNA:

double-stranded RNA

DTS:

DNA nuclear targeting sequence

EF1a:

Elongation factor-1a

ES:

Embryonic stem cells

iPS:

induced pluripotent stem

IRES:

Internal ribosome entry sequence

HAT:

Hypoxanthine aminopterin, and thymidine

LAM-PCR:

Linear amplification-mediated PCR

LINEs:

Long interspersed nuclear elements

LTR:

Long terminal repeat

LV:

Lentiviral vector

HE:

Homing endonuclease

HSS:

DNAseI-hypersensitive site

HR:

Homologous recombination

miRNAs:

microRNAs

MMLV:

Moloney murine leukemia virus

NHEJ:

Non-homologous end joining

NoLS:

Nucleolar localization sequence

nrLAM-PCR:

Non-restrictive LAM-PCR

PB:

PiggyBac

PGK:

Phosphoglycerate kinase

PRRs:

Pattern-recognition receptors

RISC:

RNA Induced Silencing Complex

γRV:

Gammaretroviruses

SB:

Sleeping Beauty

SIN:

Self-inactivating retrovirus

siRNAs:

small interfering RNAs

TFBS:

Transcription factor binding site

TLR:

Toll-like receptor

TSS:

Transcription start site

TIP-chip:

Transposon insertion site profiling chip

ZFN:

Zinc-finger nuclease

ZFP:

Zinc-finger protein

ZFR:

Zinc-finger recombinase

References

  • Ahangarani RR, Janssens W, Carlier V et al (2011) Retroviral vectors induce epigenetic chromatin modifications and IL-10 production in transduced B cells via activation of toll-like receptor 2. Mol Ther 19:711–722

    Article  CAS  Google Scholar 

  • Arnould S, Chames P, Perez C et al (2006) Engineering of large numbers of highly specific homing endonucleases that induce recombination on novel DNA targets. J Mol Biol 355:443–458

    Article  CAS  Google Scholar 

  • Aubert M, Ryu BY, Banks L et al (2011) Successful targeting and disruption of an integrated reporter lentivirus using the engineered homing endonuclease Y2 I-AniI. PLoS One 6:e16825

    Article  CAS  Google Scholar 

  • Balciunas D, Wangensteen KJ, Wilber A et al (2006) Harnessing a high cargo-capacity transposon for genetic applications in vertebrates. PLoS Genet 2:e169

    Article  CAS  Google Scholar 

  • Barber GN (2011) Innate immune DNA sensing pathways: STING, AIMII and the regulation of interferon production and inflammatory responses. Curr Opin Immunol 23:10–20

    Article  CAS  Google Scholar 

  • Barski A, Cuddapah S, Cui K et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 29:823–837

    Article  CAS  Google Scholar 

  • Bartholomew C, Ihle JN (1991) Retroviral insertions 90 kilobases proximal to the Evi-1 myeloid transforming transforming gene activate transcription from the normal promoter. Mol Cell Biol 11:1820–1828

    CAS  Google Scholar 

  • Baum C, Düllmann J, Li Z et al (2003) Side effects of retroviral gene transfer into hematopoietic stem cells. Blood 101:2099–2114

    Article  CAS  Google Scholar 

  • Baum C, Kustikova O, Modlich U et al (2006) Mutagenesis and oncogenesis by chromosomal insertion of gene transfer vectors. Hum Gene Ther 17:252–263

    Article  Google Scholar 

  • Beerli RR, Barbas CF 3rd (2002) Engineering polydactyl zinc-finger transcription factors. Nat Biotechnol 20:135–141

    Article  CAS  Google Scholar 

  • Ben Ali A, Wuyts J, De Wachter R et al (1999) Construction of a variability map for eukaryotic large subunit ribosomal RNA. Nucleic Acids Res 27:2825–2831

    Article  CAS  Google Scholar 

  • Biasco L, Ambrosi A, Pellin D et al (2010) Integration profile of retroviral vector in gene therapy treated patients is cell-specific according to gene expression and chromatin conformation of target cell. EMBO Mol Med 3:89–101

    Article  CAS  Google Scholar 

  • Birling MC, Gofflot F, Warot X (2009) Site-specific recombinases for manipulation of the mouse genome. Methods Mol Biol 561:245–263

    Article  CAS  Google Scholar 

  • Bower DM, Prather KL (2009) Engineering of bacterial strains and vectors for the production of plasmid DNA. Appl Microbiol Biotechnol 82:805–813

    Article  CAS  Google Scholar 

  • Bowie AG, Fitzgerald KA (2007) RIG-I: tri-ing to discriminate between self and non-self RNA. Trends Immunol 28:147–150

    Article  CAS  Google Scholar 

  • Breckpot K, Escors D, Arce F et al (2010) HIV-1 lentiviral vector immunogenicity is mediated by Toll-like receptor 3 (TLR3) and TLR7. J Virol 84:5627–5636

    Article  CAS  Google Scholar 

  • Bronson SK, Plaehn EG, Kluckman KD et al (1996) Single-copy transgenic mice with chosen-site integration. Proc Natl Acad Sci USA 93:9067–9072

    Article  CAS  Google Scholar 

  • Cadinanos J, Bradley A (2007) Generation of an inducible and optimized piggyBac transposon system. Nucleic Acids Res 35:e87

    Article  CAS  Google Scholar 

  • Carnes AE, Luke JM, Vincent JM et al (2011) Plasmid DNA fermentation strain and process-specific effects on vector yield, quality, and transgene expression. Biotechnol Bioeng 108:354–363

    Article  CAS  Google Scholar 

  • Casola S (2010) Mouse models for miRNA expression: the ROSA26 locus. Methods Mol Biol 667:145–163

    Article  CAS  Google Scholar 

  • Cattoglio C, Facchini G, Sartori D et al (2007) Hot spots of retroviral integration in human CD34+ hematopoietic cells. Blood 110:1770–1778

    Article  CAS  Google Scholar 

  • Cattoglio C, Maruggi G, Bartholomae C et al (2010a) High-definition mapping of retroviral integration sites defines the fate of allogeneic T cells after donor lymphocyte infusion. PLoS One 5:e15688

    Article  CAS  Google Scholar 

  • Cattoglio C, Pellin D, Rizzi E et al (2010b) High-definition mapping of retroviral integration sites identifies active regulatory elements in human multipotent hematopoietic progenitors. Blood 116:5507–5517

    Article  CAS  Google Scholar 

  • Chen CM, Krohn J, Bhattacharya S et al (2011) A comparison of exogenous promoter activity at the ROSA26 locus using a PhiC31 integrase mediated cassette exchange approach in mouse ES cells. PLoS One 6:e23376

    Article  CAS  Google Scholar 

  • Ciceri F, Bonini C, Marktel S et al (2007) Antitumor effects of HSV-TK-engineered donor lymphocytes after allogeneic stem-cell transplantation. Blood 109:4698–4707

    Article  CAS  Google Scholar 

  • Ciceri F, Bonini C, Stanghellini MT et al (2009) Infusion of suicide-gene-engineered donor lymphocytes after family haploidentical haemopoietic stem-cell transplantation for leukaemia (the TK007 trial): a non-randomised phase I-II study. Lancet Oncol 10:489–500

    Article  Google Scholar 

  • Ciuffi A, Llano M, Poeschla E et al (2005) A role for LEDGF/p75 in targeting HIV DNA integration. Nat Med 11:1287–1289

    Article  CAS  Google Scholar 

  • Cohen-Tannoudji M, Robine S, Choulika A et al (1998) I-SceI-induced gene replacement at a natural locus in embryonic stem cells. Mol Cell Biol 18:1444–1448

    CAS  Google Scholar 

  • Cui K, Zang C, Roh TY et al (2009) Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation. Cell Stem Cell 4:80–93

    Article  CAS  Google Scholar 

  • Dalsgaard T, Moldt B, Sharma N et al (2009) Shielding of sleeping beauty DNA transposon-delivered transgene cassettes by heterologous insulators in early embryonal cells. Mol Ther 17:121–130

    Article  CAS  Google Scholar 

  • Dang CV, Lee WMF (1989) Nuclear and nucleolar targeting sequences of c-erb-A, c-myb, N-myc, p53, HSP70, and HIV tat proteins. J Biol Chem 264:18019–18023

    CAS  Google Scholar 

  • de Felipe P (2002) Polycistronic viral vectors. Curr Gene Ther 2:355–378

    Article  Google Scholar 

  • DeKelver RC, Choi VM, Moehle EA et al (2010) Functional genomics, proteomics, and regulatory DNA analysis in isogenic settings using zinc finger nuclease-driven transgenesis into a safe harbor locus in the human genome. Genome Res 20:1133–1142

    Article  CAS  Google Scholar 

  • Deyle DR, Russell DW (2009) Adeno-associated virus vector integration. Curr Opin Mol Ther 11:442–447

    CAS  Google Scholar 

  • Dutheil N, Yoon-Robarts M, Ward P et al (2004) Characterization of the mouse adeno-associated virus AAVS1 ortholog. J Virol 78:8917–8921

    Article  CAS  Google Scholar 

  • Ehrhardt A, Engler JA, Xu H et al (2006) Molecular analysis of chromosomal rearrangements in mammalian cells after phiC31-mediated integration. Hum Gene Ther 17:1077–1094

    Article  CAS  Google Scholar 

  • Elbashir SM, Harborth J, Lendeckel W et al (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  CAS  Google Scholar 

  • Ellis J (2005) Silencing and variegation of gammaretrovirus and lentivirus vectors. Hum Gene Ther 16:1241–1246

    Article  CAS  Google Scholar 

  • Emery DW (2011) The use of chromatin insulators to improve the expression and safety of integrating gene transfer vectors. Hum Gene Ther 22:761–774

    Article  CAS  Google Scholar 

  • Evans-Galea MV, Wielgosz MM, Hanawa H et al (2007) Suppression of clonal dominance in cultured human lymphoid cells by addition of the cHS4 insulator to a lentiviral vector. Mol Ther 15:801–809

    CAS  Google Scholar 

  • Fehse B, Roeder I (2008) Insertional mutagenesis and clonal dominance: biological and statistical considerations. Gene Ther 15:143–153

    Article  CAS  Google Scholar 

  • Felice B, Cattoglio C, Cittaro D et al (2009) Transcription factor binding sites are genetic determinants of retroviral integration in the human genome. PLoS One 4:e4571

    Article  CAS  Google Scholar 

  • Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  Google Scholar 

  • Fiszer-Kierzkowska A, Vydra N, Wysocka-Wycisk A et al (2011) Liposome-based DNA carriers may induce cellular stress response and change gene expression pattern in transfected cells. BMC Mol Biol 10:12–27

    Google Scholar 

  • Galvan DL, Nakazawa Y, Kaja A et al (2009) Genome-wide mapping of PiggyBac transposon integrations in primary human T cells. J Immunother 32:837–844

    Article  CAS  Google Scholar 

  • Garrison BS, Yant SR, Mikkelsen JG, Kay MA (2007) Postintegrative gene silencing within the Sleeping Beauty transposition system. Mol Cell Biol 27:8824–8833

    Article  CAS  Google Scholar 

  • Gaszner M, Felsenfeld G (2006) Insulators: exploiting transcriptional and epigenetic mechanisms. Nat Rev Genet 7:703–713

    Article  CAS  Google Scholar 

  • Gautam A, Densmore CL, Waldrep JC (2001) Pulmonary cytokine responses associated with PEI-DNA aerosol gene therapy. Gene Ther 8:254–257

    Article  CAS  Google Scholar 

  • Georgopoulos LJ, Elgue G, Sanchez J et al (2009) Preclinical evaluation of innate immunity to baculovirus gene therapy vectors in whole human blood. Mol Immunol 46:2911–2917

    Article  CAS  Google Scholar 

  • Gersbach CA, Gaj T, Rm G et al (2011) Targeted plasmid integration into the human genome by an engineered zinc-finger recombinase. Nucleic Acids Res 39:7868–7878

    Article  CAS  Google Scholar 

  • Geurts AM, Collier LS, Geurts JL et al (2006) Gene mutations and genomic rearrangements in the mouse as a result of transposon mobilization from chromosomal concatemers. PLoS Genet 2:e156

    Article  CAS  Google Scholar 

  • Glimm H, Schmidt M, Fischer M et al (2005) Efficient marking of human cells with rapid but transient repopulating activity in autografted recipients. Blood 106:893–898

    Article  CAS  Google Scholar 

  • Golding MC, Mann MR (2011) A bidirectional promoter architecture enhances lentiviral transgenesis in embryonic and extraembryonic stem cells. Gene Ther 18:817–826

    Article  CAS  Google Scholar 

  • Gouble A, Smith J, Bruneau S et al (2006) Efficient in toto targeted recombination in mouse liver by meganuclease-induced double-strand break. J Gene Med 8:616–622

    Article  CAS  Google Scholar 

  • Goulaouic H, Chow SA (1996) Directed integration of viral DNA mediated by fusion proteins consisting of human immunodeficiency virus type 1 integrase and Escherichia coli LexA protein. J Virol 70:37–46

    CAS  Google Scholar 

  • Grabundzija I, Irgang M, Mátés L et al (2010) Comparative analysis of transposable element vector systems in human cells. Mol Ther 18:1200–1209

    Article  CAS  Google Scholar 

  • Grewal SI, Moazed D (2003) Heterochromatin and epigenetic control of gene expression. Science 301:798–802

    Article  CAS  Google Scholar 

  • Grizot S, Smith J, Daboussi F et al (2009) Efficient targeting of a SCID gene by an engineered single-chain homing endonuclease. Nucleic Acids Res 37:5405–5419

    Article  CAS  Google Scholar 

  • Guo J, Gaj T, Barbas CF (2010) Directed evolution of an enhanced and highly efficient FokI cleavage domain for zinc finger nucleases. J Mol Biol 400:96–107

    Article  CAS  Google Scholar 

  • Hacein-Bey-Abina S, von Kalle C, Schmidt M et al (2003a) A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 348:255–256

    Article  Google Scholar 

  • Hacein-Bey-Abina S, von Kalle C, Schmidt M et al (2003b) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302:415–419

    Article  CAS  Google Scholar 

  • Hamady M, Walker JJ, Harris JK et al (2008) Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nat Methods 5:235–237

    Article  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  CAS  Google Scholar 

  • Händel EM, Cathomen T (2011) Zinc-finger nuclease based genome surgery: it’s all about specificity. Curr Gene Ther 11:28–37

    Article  Google Scholar 

  • Hayashi T, Lamba DA, Slowik A et al (2010) A method for stabilizing RNA for transfection that allows control of expression duration. Dev Dyn 239:2034–2040

    Article  CAS  Google Scholar 

  • Heath PJ, Stephens KM, Monnat RJ Jr, Stoddard BL (1997) The structure of I-Crel, a group I intron-encoded homing endonuclease. Nat Struct Biol 4:468–476

    Article  CAS  Google Scholar 

  • Hematti P, Hong BK, Ferguson C et al (2004) Distinct genomic integration of MLV and SIV vectors in primate hematopoietic stem and progenitor cells. PLoS Biol 2:e423

    Article  CAS  Google Scholar 

  • Henckaerts E, Linden RM (2010) Adeno-associated virus: a key to the human genome? Future Virol 5:555–574

    Article  CAS  Google Scholar 

  • Hodges BL, Taylor KM, Joseph MF et al (2004) Long-term transgene expression from plasmid DNA gene therapy vectors is negatively affected by CpG dinucleotides. Mol Ther 10:269–278

    Article  CAS  Google Scholar 

  • Huang X, Yang Y (2009) Innate immune recognition of viruses and viral vectors. Hum Gene Ther 20:293–301

    Article  CAS  Google Scholar 

  • Huang X, Guo H, Tammana S et al (2010) Gene transfer efficiency and genome-wide integration profiling of Sleeping Beauty, Tol2, and piggyBac transposons in human primary T cells. Mol Ther 18:1803–1813

    Article  CAS  Google Scholar 

  • Irion S, Luche H, Gadue P et al (2007) Identification and targeting of the ROSA26 locus in human embryonic stem cells. Nat Biotechnol 25:1477–1482

    Article  CAS  Google Scholar 

  • Ishii KJ, Akira S (2005) TLR ignores methylated RNA? Immunity 23:111–113

    Article  CAS  Google Scholar 

  • Ishii KJ, Akira S (2008) Potential link between the immune system and metabolism of nucleic acids. Curr Opin Immunol 20:524–529

    Article  CAS  Google Scholar 

  • Ismail SI, Kingsman SM, Kingsman AJ, Uden M (2000) Split-intron retroviral vectors: enhanced expression with improved safety. J Virol 74:2365–2371

    Article  CAS  Google Scholar 

  • Ivics Z, Hackett PB, Plasterk RH, Izsvák Z (1997) Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91:501–510

    Article  CAS  Google Scholar 

  • Ivics Z, Katzer A, Stüwe EE, Fiedler D, Knespel S, Izsvák Z (2007) Targeted sleeping beauty transposition in human cells. Mol Ther 15:1137–1144

    Google Scholar 

  • Jacobsen L, Calvin S, Lobenhofer E (2009) Transcriptional effects of transfection: the potential for misinterpretation of gene expression data generated from transiently transfected cells. Biotechniques 47:617–624

    Article  CAS  Google Scholar 

  • Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254

    Article  CAS  Google Scholar 

  • Jähner D, Jaenisch R (1985) Chromosomal position and specific demethylation in enhancer sequences of germ line-transmitted retroviral genomes during mouse development. Mol Cell Biol 5:2212–2220

    Google Scholar 

  • Jähner D, Stuhlmann H, Stewart CL et al (1982) De novo methylation and expression of retroviral genomes during mouse embryogenesis. Nature 298:623–628

    Article  Google Scholar 

  • Jasin M, Moynahan ME, Richardson C (1996) Targeted transgenesis. Proc Natl Acad Sci USA 93:8804–8808

    Article  CAS  Google Scholar 

  • Kameyam Y, Kawabe Y, Ito A, Kamihira M (2010) An accumulative site-specific gene integration system using cre recombinase-mediated cassette exchange. Biotechnol Bioeng 105:1106–1114

    Google Scholar 

  • Kaminski JM, Huber MR, Summers JB, Ward MB (2002) Design of a nonviral vector for site-selective, efficient integration into the human genome. FASEB J 6:1242–1247

    Article  Google Scholar 

  • Karikó K, Bhuyan P, Capodici J et al (2004) Exogenous siRNA mediates sequence-independent gene suppression by signaling through toll-like receptor 3. Cells Tissues Organs 177:132–138

    Article  CAS  Google Scholar 

  • Karikó K, Buckstein M, Ni H, Weissman D (2005) Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23:165–175

    Article  CAS  Google Scholar 

  • Kawashima T, Osanai M, Futahashi R (2007) A novel target-specific gene delivery system combining baculovirus and sequence-specific long interspersed nuclear elements. Virus Res 127:49–60

    Article  CAS  Google Scholar 

  • Kay MA, Glorioso JC, Naldini L (2001) Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med 7:33–40

    Article  CAS  Google Scholar 

  • Kedes LH (1979) Histone genes and histone messengers. Annu Rev Biochem 48:837–870

    Article  CAS  Google Scholar 

  • Kim YK, Kim VN (2007) Processing of intronic microRNAs. EMBO J 26:775–783

    Article  CAS  Google Scholar 

  • Kojima KK, Fujiwara H (2003) Evolution of target specificity in R1 clade non-LTR retrotransposon. Mol Biol Evol 20:351–361

    Article  CAS  Google Scholar 

  • Kojima KK, Fujiwara H (2004) Cross-genome screening of novel sequence-specific non-LTR retrotransposons: various multicopy RNA genes and microsatellites are selected as targets. Mol Biol Evol 21:207–217

    Article  CAS  Google Scholar 

  • Kolb AF, Coates CJ, Kaminski JM et al (2005) Site-directed genome modification: nucleic acid and protein modules for targeted integration and gene correction. Trends Biotechnol 23:399–406

    Article  CAS  Google Scholar 

  • Kormann MS, Hasenpusch G, Aneja MK et al (2011) Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nat Biotechnol 29:154–157

    Article  CAS  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Google Scholar 

  • Kustikova OS, Wahlers A, Kuhlcke K et al (2003) Dose finding with retroviral vectors: Correlation of retroviral vector copy numbers in single cells with gene transfer efficiency in a cell population. Blood 102:3934–3937

    Article  CAS  Google Scholar 

  • Kustikova OS, Fehse B, Modlich U et al (2005) Clonal dominance of hematopoietic stem cells triggered by retroviral gene marking. Science 308:1171–1174

    Article  CAS  Google Scholar 

  • Kustikova OS, Baum C, Fehse B (2008) Retroviral integration site analysis in hematopoietic stem cells. Methods Mol Biol 430:255–267

    Article  CAS  Google Scholar 

  • Kustikova O, Brugman M, Baum C (2010) The genomic risk of somatic gene therapy. Semin Cancer Biol 20:269–278

    Article  CAS  Google Scholar 

  • Lam AP, Dean DA (2010) Progress and prospects: nuclear import of nonviral vectors. Gene Ther 17:439–447

    Article  CAS  Google Scholar 

  • Lamartina S, Sporeno E, Fattori E, Toniatti C (2000) Characteristics of the adeno-associated virus preintegration site in human chromosome 19: open chromatin conformation and transcription-competent environment. J Virol 74:7671–7677

    Article  CAS  Google Scholar 

  • Lechertier T, Sirri V, Hernandez-Verdun D, Roussel P (2007) A B23-interacting sequence as a tool to visualize protein interactions in a cellular context. J Cell Sci 120:265–375

    Article  CAS  Google Scholar 

  • Lesbats P, Botbol Y, Chevereau G et al (2011) Functional coupling between HIV-1 integrase and the SWI/SNF chromatin remodeling complex for efficient in vitro integration into stable nucleosomes. PLoS Pathog 7:e1001280

    Article  CAS  Google Scholar 

  • Lewinski MK, Yamashita M, Emerman M et al (2006) Retroviral DNA integration: viral and cellular determinants of target-site selection. PLoS Pathog 2:e60

    Article  CAS  Google Scholar 

  • Li CL, Xiong D, Stamatoyannopoulos G, Emery DW (2009) Genomic and functional assays demonstrate reduced gammaretroviral vector genotoxicity associated with use of the cHS4 chromatin insulator. Mol Ther 17:716–724

    Article  CAS  Google Scholar 

  • Liu G, Geurts AM, Yae K et al (2005) Target-site preferences of Sleeping Beauty transposons. J Mol Biol 346:161–173

    Article  CAS  Google Scholar 

  • Liu X, Liu M, Xue Z et al (2007) Non-viral ex vivo transduction of human hepatocyte cells to express factor VIII using a human ribosomal DNA-targeting vector. J Thromb Haemost 5:347–351

    Article  CAS  Google Scholar 

  • Liu Y, Lakshmipathy U, Ozgenc A et al (2010) hESC engineering by integrase-mediated chromosomal targeting. Methods Mol Biol 584:229–268

    Article  CAS  Google Scholar 

  • Lombardo A, Cesana D, Genovese P et al (2011) Site-specific integration and tailoring of cassette design for sustainable gene transfer. Nat Methods 8:861–869

    Article  CAS  Google Scholar 

  • Lu Z, Ghazizadeh S (2007) Loss of transgene following ex vivo gene transfer is associated with a dominant Th2 response: implications for cutaneous gene therapy. Mol Ther 15:954–961

    Article  CAS  Google Scholar 

  • Maison C, Almouzni G (2004) HP1 and the dynamics of heterochromatin maintenance. Nat Rev Mol Cell Biol 5:296–304

    Article  CAS  Google Scholar 

  • Manno CS, Pierce GF, Arruda VR et al (2006) Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med 12:342–347

    Article  CAS  Google Scholar 

  • Maragathavally KJ, Kaminski JM, Coates CJ (2006) Chimeric Mos1 and piggyBac transposases result in site-directed integration. FASEB J 20:1880–1882

    Article  CAS  Google Scholar 

  • Markusic DM, de Waart DR, Seppen J (2010) Separating lentiviral vector injection and induction of gene expression in time, does not prevent an immune response to rtTA in rats. PLoS One 5:e9974

    Article  CAS  Google Scholar 

  • Marshall HM, Ronen K, Berry C et al (2007) Role of PSIP1/LEDGF/p75 in lentiviral infectivity and integration targeting. PLoS One 2:e1340

    Article  CAS  Google Scholar 

  • Mates L, Izsvak Z, Ivics Z (2007) Technology transfer from worms and flies to vertebrates: transposition-based genome manipulations and their future perspectives. Genome Biol 8(Suppl 1):S1

    Article  Google Scholar 

  • Mates L, Chuah MK, Belay E et al (2009) Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nat Genet 41:753–761

    Article  CAS  Google Scholar 

  • McConnell Smith A, Takeuchi R, Pellenz S et al (2009) Generation of a nicking enzyme that stimulates site-specific gene conversion from the I-AniI LAGLIDADG homing endonuclease. Proc Natl Acad Sci USA 106:5099–5104

    Article  CAS  Google Scholar 

  • McKenna SA, Kim I, Puglisi EV et al (2007) Purification and characterization of transcribed RNAs using gel filtration chromatography. Nat Protoc 2:3270–3277

    Article  CAS  Google Scholar 

  • Meir YJ, Weirauch MT, Yang HS et al (2011) Genome-wide target profiling of piggyBac and Tol2 in HEK 293: pros and cons for gene discovery and gene therapy. BMC Biotechnol 11:28

    Article  CAS  Google Scholar 

  • Meister G, Tuschl T (2004) Mechanisms of gene silencing by double stranded RNA. Nature 431:343–349

    Article  CAS  Google Scholar 

  • Métais JY, Dunbar CE (2008) The MDS1-EVI1 gene complex as a retrovirus integration site: impact on behavior of hematopoietic cells and implications for gene therapy. Mol Ther 6:439–449

    Article  CAS  Google Scholar 

  • Mikkelsen JG, Yant SR, Meuse L et al (2003) Helper-independent Sleeping Beauty transposontransposase vectors for efficient nonviral gene delivery and persistent gene expression in vivo. Mol Ther 8:654–665

    Article  CAS  Google Scholar 

  • Miller A, Dean D (2009) Tissue-specific and transcription factor-mediated nuclear entry of DNA. Adv Drug Deliv Rev 61:603–613

    Google Scholar 

  • Mingozzi F, High KA (2011) Immune Responses to AAV in Clinical Trials. Curr Gene Ther 11:321–330

    Article  CAS  Google Scholar 

  • Miranda TB, Jones PA (2007) DNA methylation: the nuts and bolts of repression. J Cell Physiol 213:384–390

    Article  CAS  Google Scholar 

  • Miskey C, Izsvak Z, Kawakami K, Ivics Z (2005) DNA transposons in vertebrate functional genomics. Cell Mol Life Sci 62:629–641

    Article  CAS  Google Scholar 

  • Modlich U, Bohne J, Schmidt M et al (2006) Cell-culture assays reveal the importance of retroviral vector design for insertional genotoxicity. Blood 108:2545–2553

    Article  CAS  Google Scholar 

  • Modlich U, Navarro S, Zychlinski D et al (2009) Insertional transformation of hematopoietic cells by self-inactivating lentiviral and gammaretroviral vectors. Mol Ther 17:1919–1928

    Article  CAS  Google Scholar 

  • Moldt B, Yant SR, Andersen PR et al (2007) Cis-acting gene regulatory activities in the terminal regions of sleeping beauty DNA transposon-based vectors. Hum Gene Ther 18:1193–1204

    Article  CAS  Google Scholar 

  • Montini E, Cesana D, Schmidt M et al (2006) Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat Biotechnol 24:687–696

    Article  CAS  Google Scholar 

  • Montini E, Cesana D, Schmidt M et al (2009) The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy. J Clin Invest 119:964–975

    Article  CAS  Google Scholar 

  • Morales ME, Mann VH, Kines KJ et al (2007) PiggyBac transposon mediated transgenesis of the human blood fluke, Schistosoma mansoni. FASEB J 21:3479–3489

    Article  CAS  Google Scholar 

  • Moreno-Carranza B, Gentsch M, Stein S et al (2009) Transgene optimization significantly improves SIN vector titers, gp91phox expression and reconstitution of superoxide production in X-CGD cells. Gene Ther 16:111–118

    Article  CAS  Google Scholar 

  • Naldini L (2006) Inserting optimism into gene therapy. Nat Med 12:386–388

    Article  CAS  Google Scholar 

  • Nayak S, Herzog RW (2010) Progress and prospects: immune responses to viral vectors. Gene Ther 17:295–304

    Article  CAS  Google Scholar 

  • Niidome T, Huang L (2002) Gene therapy progress and prospects: nonviral vectors. Gene Ther 9:1647–1652

    Article  CAS  Google Scholar 

  • Niu Y, Tenney K, Li H, Gimble FS (2008) Engineering variants of the ISceI homing endonuclease with strand-specific and site-specific DNA-nicking activity. J Mol Biol 382:188–202

    Article  CAS  Google Scholar 

  • Ogata T, Kozuka T, Kanda T (2003) Identification of an insulator in AAVS1, a preferred region for integration of adeno-associated virus DNA. J Virol 77:9000–9007

    Article  CAS  Google Scholar 

  • Ott MG, Schmidt M, Schwarzwaelder K et al (2006) Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med 12:401–409

    Article  CAS  Google Scholar 

  • Palais G, Nguyen Dinh Cat A, Friedman H et al (2009) Targeted transgenesis at the HPRT locus: an efficient strategy to achieve tightly controlled in vivo conditional expression with the tet system. Physiol Genomics 37:140–146

    Article  CAS  Google Scholar 

  • Palazzoli F, Bire S, Bigot Y, Bonnin-Rouleux F (2011) Landscape of chromatin control element patents: positioning effects in pharmaceutical bioproduction. Nat Biotechnol 29:593–597

    Article  CAS  Google Scholar 

  • Papapetrou EP, Sadelain M (2011) Generation of transgene-free human induced pluripotent stem cells with an excisable single polycistronic vector. Nat Protoc 6:1251–1273

    Article  CAS  Google Scholar 

  • Papapetrou EP, Lee G, Malani N et al (2011) Genomic safe harbors permit high β-globin transgene expression in thalassemia induced pluripotent stem cells. Nat Biotechnol 29:73–78

    Article  CAS  Google Scholar 

  • Park CW, Park J, Kren BT, Steer CJ (2006) Sleeping Beauty transposition in the mouse genome is associated with changes in DNA methylation at the site of insertion. Genomics 88:204–213

    Article  CAS  Google Scholar 

  • Paruzynski A, Arens A, Gabriel R et al (2010) Genome-wide high-throughput integrome analyses by nrLAM-PCR and next-generation sequencing. Nat Protoc 5:1379–1395

    Article  CAS  Google Scholar 

  • Pavletich NP, Pabo CO (1991) Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2 1 A. Science 252:809–817

    Article  CAS  Google Scholar 

  • Philpott NJ, Gomos J, Falck-Pedersen E (2004) Transgene expression after rep-mediated site-specific integration into chromosome 19. Hum Gene Ther 15:47–61

    Article  CAS  Google Scholar 

  • Pichon C, Billiet L, Midoux P (2010) Chemical vectors for gene delivery: uptake and intracellular trafficking. Curr Opin Biotechnol 21:640–645

    Article  CAS  Google Scholar 

  • Posfai G, Plunkett G III, Feher T et al (2006) Emergent properties of reduced genome Escherichia coli. Science 312:1044–1046

    Article  CAS  Google Scholar 

  • Radcliffe PA, Sion CJ, Wilkes FJ et al (2008) Analysis of factor VIII mediated suppression of lentiviral vector titres. Gene Ther 15:289–297

    Article  CAS  Google Scholar 

  • Ramachandra CJ, Shahbazi M, Kwang TW et al (2011) Efficient recombinase-mediated cassette exchange at the AAVS1 locus in human embryonic stem cells using baculoviral vectors. Nucleic Acids Res 39:e107

    Article  CAS  Google Scholar 

  • Recchia A, Bonini C, Magnani Z et al (2006) Retroviral vector integration deregulates gene expression but has no consequence on the biology and function of transplanted T cells. Proc Natl Acad Sci USA 103:1457–1462

    Article  CAS  Google Scholar 

  • Reyes-Sandoval A, Ertl HC (2004) CpG methylation of a plasmid vector results in extended transgene product expression by circumventing induction of immune responses. Mol Ther 9:249–261

    Article  CAS  Google Scholar 

  • Rossetti M, Gregori S, Hauben E et al (2011) HIV-1-derived lentiviral vectors directly activate plasmacytoid dendritic cells, which in turn induce the maturation of myeloid dendritic cells. Hum Gene Ther 22:177–188

    Article  CAS  Google Scholar 

  • Sakai K, Ohta T, Minoshima S et al (1995) Human ribosomal RNA gene cluster: identification of the proximal end containing a novel tandem repeat sequence. Genomics 26:521–526

    Article  CAS  Google Scholar 

  • Sakurai H, Kawabata K, Sakurai F et al (2008) Innate immune response induced by gene delivery vectors. Int J Pharm 354:9–15

    Article  CAS  Google Scholar 

  • Sandmeyer S (2003) Integration by design. Proc Natl Acad Sci USA 100:5586–5588

    Article  CAS  Google Scholar 

  • Santoro SW, Schultz PG (2002) Directed evolution of the site specificity of Cre recombinase. Proc Natl Acad Sci USA 99:4185–4190

    Article  CAS  Google Scholar 

  • Schambach A, Galla M, Maetzig T et al (2007) Improving transcriptional termination of self-inactivating gamma-retroviral and lentiviral vectors. Mol Ther 15:1167–73

    CAS  Google Scholar 

  • Schmidt M, Carbonaro DA, Speckmann C et al (2003) Clonality analysis after retroviral-mediated gene transfer to CD34+ cells from the cord blood of ADA-deficient SCID neonates. Nat Med 9:463–468

    Article  CAS  Google Scholar 

  • Schmidt M, Schwarzwaelder K, Bartholomae C et al (2007) High-resolution insertion-site analysis by linear amplification-mediated PCR (LAM-PCR). Nat Methods 4:1051–1057

    Article  CAS  Google Scholar 

  • Schroder AR, Shinn P, Chen H et al (2002) HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110:521–529

    Article  CAS  Google Scholar 

  • Shi X, Harrison RL, Hollister JR et al (2007) Construction and characterization of new piggyBac vectors for constitutive or inducible expression of heterologous gene pairs and the identification of a previously unrecognized activator sequence in piggyBac. BMC Biotechnol 7:5

    Article  CAS  Google Scholar 

  • Sioud M (2006) Innate sensing of self and non-self RNAs by Toll-like receptors. Trends Mol Med 12:167–176

    Article  CAS  Google Scholar 

  • Sjeklocha L, Chen Y, Daly MC et al (2011) β-globin matrix attachment region improves stable genomic expression of the Sleeping Beauty transposon. J Cell Biochem 112:2361–2375

    Article  CAS  Google Scholar 

  • Smith J, Grizot S, Arnould S et al (2006) A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences. Nucleic Acids Res 34:e149

    Article  CAS  Google Scholar 

  • Sorrell DA, Kolb AF (2005) Targeted modification of mammalian genomes. Biotechnol Adv 23:431–469

    Article  CAS  Google Scholar 

  • Strathdee D, Ibbotson H, Grant SG (2006) Expression of transgenes targeted to the Gt(ROSA)26Sor locus is orientation dependent. PLoS One 1:e4

    Article  CAS  Google Scholar 

  • Su K, Wang D, Ye J et al (2009) Site-specific integration of retroviral DNA in human cells using fusion proteins consisting of human immunodeficiency virus type 1 integrase and the designed polydactyl zinc-finger protein E2C. Methods 47:269–276

    Article  CAS  Google Scholar 

  • Sumiyoshi T, Holt NG, Hollis RP et al (2009) DB Stable transgene expression in primitive human CD34+ hematopoietic stem/progenitor cells using the Sleeping Beauty transposon system. Hum Gene Ther 20:1607–1626

    Article  CAS  Google Scholar 

  • Suzuki R, Oda Y, Utoguchi N, Maruyama K (2011) Progress in the development of ultrasound-mediated gene delivery systems utilizing nanoand microbubbles. J Control Release 149:36–41

    Article  CAS  Google Scholar 

  • Szczepek M, Brondani V, Büchel J et al (2007) Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nature Biotech 25:786–793

    Article  CAS  Google Scholar 

  • Takahashi H, Fujiwara H (1999) Transcription analysis of the telomeric repeat-specific retrotransposons TRAS1 and SART1 of the silkworm Bombyx mori. Nucleic Acids Res 27:2015–2021

    Article  CAS  Google Scholar 

  • Takahashi H, Fujiwara H (2002) Transplantation of target site specificity by swapping the endonuclease domains of two LINEs. EMBO J 21:408–417

    Article  CAS  Google Scholar 

  • Takiguchi N, Takahashi Y, Nishikawa M et al (2011) Positive correlation between the generation of reactive oxygen species and activation/reactivation of transgene expression after hydrodynamic injections into mice. Pharm Res 28:702–711

    Article  CAS  Google Scholar 

  • Tham WH, Zakian VA (2002) Transcriptional silencing at Saccharomyces telomeres: implications for other organisms. Oncogene 21:512–521

    Article  CAS  Google Scholar 

  • Thierry A, Dujon B (1992) Nested chromosomal fragmentation in yeast using the meganuclease I-Sce I: a new method for physical mapping of eukaryotic genomes. Nucleic Acids Res 20:5625–5631

    Article  CAS  Google Scholar 

  • Thyagarajan B, Olivares EC, Hollis RP et al (2001) Site-specific genomic integration in mammalian cells mediated by phage phiC31 integrase. Mol Cell Biol 21:3926–3934

    Article  CAS  Google Scholar 

  • Trinh AT, Ball BG, Weber E et al (2009) Retroviral vectors encoding ADA regulatory locus control region provide enhanced T-cell-specific transgene expression. Genet Vaccines Ther 30:7–13

    Google Scholar 

  • Turan S, Galla M, Ernst E et al (2011) Recombinase-mediated cassette exchange (RMCE): traditional concepts and current challenges. J Mol Biol 407:193–221

    Article  CAS  Google Scholar 

  • Turlure F, Devroe E, Silver PA et al (2004) Human cell proteins and human immunodeficiency virus DNA integration. Front Biosci 9:3187–3208

    Article  CAS  Google Scholar 

  • Un K, Kawakami S, Suzuki R et al (2011) Suppression of melanoma growth and metastasis by DNA vaccination using an ultrasound-responsive and mannose-modified gene carrier. Mol Pharm 8:543–554

    Article  CAS  Google Scholar 

  • Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646

    Article  CAS  Google Scholar 

  • Valenzuela L, Kamakaka RT (2006) Chromatin insulators. Annu Rev Genet 40:107–138

    Article  CAS  Google Scholar 

  • Vigdal TJ, Kaufman CD, Izsvak Z et al (2002) Common physical properties of DNA affecting target site selection of sleeping beauty and other Tc1/mariner transposable elements. J Mol Biol 323:441–452

    Article  CAS  Google Scholar 

  • Violot S, Hong SS, Rakotobe D et al (2003) The human polycomb group EED protein interacts with the integrase of human immunodeficiency virus type 1. J Virol 77:12507–12522

    Article  CAS  Google Scholar 

  • Voigt K, Izsvák Z, Ivics Z (2008) Targeted gene insertion for molecular medicine. J Mol Med 86:1205–1219

    Article  CAS  Google Scholar 

  • Voziyanov Y, Konieczka JH, Stewart AF, Jayaram M (2003) Stepwise manipulation of DNA specificity in Flp recombinase: progressively adapting Flp to individual and combinatorial mutations in its target site. J Mol Biol 326:65–76

    Article  CAS  Google Scholar 

  • Wade-Martins R (2011) Developing extrachromosomal gene expression vector technologies: an overview. Methods Mol Biol 738:1–17

    Article  CAS  Google Scholar 

  • Wahlers A, Schwieger M, Li Z et al (2001) Influence of multiplicity of infection and protein stability on retroviral vector mediated gene expression in hematopoietic cells. Gene Ther 8:477–486

    Article  CAS  Google Scholar 

  • Walisko O, Izsvák Z, Szabó K et al (2006) Sleeping Beauty transposase modulates cell-cycle progression through interaction with Miz-1. Proc Natl Acad Sci USA 103:4062–4067

    Article  CAS  Google Scholar 

  • Ward NJ, Buckley SM, Waddington SN (2011) Codon optimization of human factor VIII cDNAs leads to high-level expression. Blood 117:798–807

    Article  CAS  Google Scholar 

  • Wegel E, Shaw P (2005) Gene activation and deactivation related changes in the three-dimensional structure of chromatin. Chromosoma 114:331–337

    Article  Google Scholar 

  • Wei G, Wei L, Zhu J (2009) Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity 30:155–167

    Article  CAS  Google Scholar 

  • Wheelan S, Scheifele LZ, Martínez-Murillo F et al (2006) Transposon insertion site profiling chip (TIP-chip). Proc Natl Acad Sci USA 103:17632–17637

    Article  CAS  Google Scholar 

  • Wilber A, Frandsen JL, Geurts JL et al (2006) RNA as a source of transposase for Sleeping Beauty-mediated gene insertion and expression in somatic cells and tissues. Mol Ther 13:625–630

    Article  CAS  Google Scholar 

  • Wilson MH, George AL Jr (2010) Designing and testing chimeric zinc finger transposases. Methods Mol Biol 649:353–363

    Article  CAS  Google Scholar 

  • Wirth D, Gama-Norton L, Riemer P et al (2007) Road to precision: recombinase-based targeting technologies for genome engineering. Curr Opin Biotechnol 18:411–419

    Article  CAS  Google Scholar 

  • Woltjen K, Mickael IP, Mohseni P et al (2009) piggyBac transposition reprograms fIbroblasts to induced pluripotent stem cells. Nature 458:766–770

    Article  CAS  Google Scholar 

  • Wu X, Li Y, Crise B, Burgess SM (2003) Transcription start regions in the human genome are favored targets for MLV integration. Science 300:1749–1751

    Article  CAS  Google Scholar 

  • Wu SC, Meir YJ, Coates CJ et al (2006) PiggyBac is a flexible and highly active transposon as compared to sleeping beauty, Tol2, and Mos1 in mammalian cells. Proc Natl Acad Sci USA 103:15008–15013

    Article  CAS  Google Scholar 

  • Wu Z, Sun J, Zhang T et al (2008) Optimization of self-complementary AAV vectors for liverdirected expression results in sustained correction of hemophilia B at low vector dose. Mol Ther 16:280–289

    Article  CAS  Google Scholar 

  • Xie W, Gai X, Zhu Y (2001) Targeting of the yeast Ty5 retrotransposon to silent chromatin is mediated by interactions between integrase and Sir4p. Mol Cell Biol 21:6606–6614

    Article  CAS  Google Scholar 

  • Xue X, Huang X, Nodland SE et al (2009) Stable gene transfer and expression in cord blood-derived CD34+ hematopoietic stem and progenitor cells by a hyperactive Sleeping Beauty transposon system. Blood 114:1319–1330

    Article  CAS  Google Scholar 

  • Yamamoto A, Kormann M, Rosenecker J et al (2009) Current prospects for mRNA gene delivery. Eur J Pharm Biopharm 71:484–489

    Article  CAS  Google Scholar 

  • Yant SR, Kay MA (2003) Nonhomologous-end-joining factors regulate DNA repair fidelity during Sleeping Beauty element transposition in mammalian cells. Mol Cell Biol 23:8505–8518

    Article  CAS  Google Scholar 

  • Yant SR, Wu X, Huang Y et al (2005) High-resolution genome-wide mapping of transposon integration in mammals. Mol Cell Biol 25:2085–2094

    Article  CAS  Google Scholar 

  • Yant SR, Huang Y, Akache B, Kay MA (2007) Site-directed transposon integration in human cells. Nucleic Acids Res 35:e50

    Article  CAS  Google Scholar 

  • Yao S, Sukonnik T, Kean T, Bharadwaj RR, Pasceri P, Ellis J (2004) Retrovirus silencing, variegation, extinction, and memory are controlled by a dynamic interplay of multiple epigenetic modifications. Mol Ther 10:27–36

    Article  CAS  Google Scholar 

  • Yew NS (2005) Controlling the kinetics of transgene expression by plasmid design. Adv Drug Deliv Rev 57:769–780

    Article  CAS  Google Scholar 

  • Yew NS, Zhao H, Przybylska M et al (2002) CpG-depleted plasmid DNA vectors with enhanced safety and long-term gene expression in vivo. Mol Ther 5:731–738

    Article  CAS  Google Scholar 

  • Yoder JA, Walsh CP, Bestor TH (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13:335–340

    Article  CAS  Google Scholar 

  • Yoder KE, Espeseth A, Wang XH et al (2011) The base excision repair pathway is required for efficient lentivirus integration. PLoS One 6:e17862

    Article  CAS  Google Scholar 

  • Yusa K, Takeda J, Horie K (2004) Enhancement of Sleeping Beauty transposition by CpG methylation: possible role of heterochromatin formation. Mol Cell Biol 24:4004–4018

    Article  CAS  Google Scholar 

  • Yusa K, Rad R, Takeda J, Bradley A (2009) Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon. Nat Methods 6:363–369

    Article  CAS  Google Scholar 

  • Zaldumbide A, Hoeben RC (2008) How not to be seen: immune-evasion strategies in gene therapy. Gene Ther 15:239–246

    Article  CAS  Google Scholar 

  • Zambrowicz BP, Imamoto A, Fiering S et al (1997) Disruption of overlapping transcripts in the ROSA βgeo 26 gene trap strain leads to widespread expression of β-galactosidase in mouse embryos and hematopoietic cells. Proc Natl Acad Sci USA 94:3789–3794

    Article  CAS  Google Scholar 

  • Zayed H, Izsvaak S, Khare D et al (2003) The DNA-bending protein HMGB1 is a cellular cofactor of Sleeping Beauty transposition. Nucleic Acids Res 31:2313–2322

    Article  CAS  Google Scholar 

  • Zeh DW, Zeh JA, Ishida Y (2009) Transposable elements and an epigenetic basis for punctuated equilibria. Bioessays 31:715–726

    Article  CAS  Google Scholar 

  • Zhang C (2009) Novel functions for small RNA molecules 1. Curr Opin Mol Ther 11:641–651

    CAS  Google Scholar 

  • Zhou R, Norton JE, Zhang N, Dean DA (2007) Electroporation-mediated transfer of plasmids to the lung results in reduced TLR9 signaling and inflammation. Gene Ther 14:775–780

    Article  CAS  Google Scholar 

  • Zhou H, Liu ZG, Sun ZW et al (2010) Generation of stable cell lines by site-specific integration of transgenes into engineered Chinese hamster ovary strains using an FLP-FRT system. J Biotechnol 147:122–129

    Article  CAS  Google Scholar 

  • Zhu J, Park CW, Sjeklocha L et al (2010) High-level genomic integration, epigenetic changes, and expression of sleeping beauty transgene. Biochemistry 49:1507–1521

    Article  CAS  Google Scholar 

  • Zychlinski D, Schambach A, Modlich U et al (2008) Physiological promoters reduce the genotoxic risk of integrating gene vectors. Mol Ther 16:718–725

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bire, S., Rouleux-Bonnin, F. (2013). Transgene Site-Specific Integration: Problems and Solutions. In: Renault, S., Duchateau, P. (eds) Site-directed insertion of transgenes. Topics in Current Genetics, vol 23. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4531-5_1

Download citation

Publish with us

Policies and ethics