Skip to main content

Epigenetics in Parkinson’s and Alzheimer’s Diseases

  • Chapter
  • First Online:
Epigenetics: Development and Disease

Part of the book series: Subcellular Biochemistry ((SCBI,volume 61))

Abstract

Neurodegenerative disorders, such as Parkinson’s and Alzheimer’s disease, are highly complex, due to their multifactorial origin, not only depending on genetic but also on environmental factors. Several genetic risk factors have already been associated with both the diseases, however, the precise way through which the environment contributes to neurodegeneration is still unclear.

Recently, epigenetic mechanisms, such as DNA methylation, chromatin remodeling or miRNAs, which may induce alterations in genes expression, have started to be implicated in both AD and PD. Epigenetic modulation is present since pre-natal stages and throughout lifetime, and depends on lifestyle conditions and environmental exposures, and consequently could represent the missing link between risk factors and the development of sporadic disorders. This chapter will discusses the role of epigenetics in AD and PD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agirre X, Román-Gómez J, Vázquez I, Jiménez-Velasco A, Garate L, Montiel-Duarte C, Artieda P, Cordeu L, Lahortiga I, Calasanz MJ, Heiniger A, Torres A, Minna JD, Prósper F (2006) Abnormal methylation of the common PARK2 and PACRG promoter is associated with downregulation of gene expression in acute lymphoblastic leukemia and chronic myeloid leukemia. Int J Cancer 118(8):1945–1953

    Article  PubMed  CAS  Google Scholar 

  • Association A (2009) Alzheimer’s disease facts and figures. Alzheimers Dement 5:234–270

    Article  Google Scholar 

  • Bak M, Silahtaroglu A, Møller M, Christensen M, Rath MF, Skryabin B, Tommerup N, Kauppinen S (2008) MicroRNA expression in the adult mouse central nervous system. RNA 14(3):432–444

    Article  PubMed  CAS  Google Scholar 

  • Bettens K, Sleegers K, Broeckhoven CV (2010) Current status on Alzheimer disease molecular genetics: from past, to present, to future. Hum Mol Genet 19(1):R4–R11

    Article  PubMed  CAS  Google Scholar 

  • Blandini F, Fancellu R, Martignoni E, Mangiagalli A, Pacchetti C, Samuele A, Nappi G (2001) Plasma homocysteine and l-dopa metabolism in patients with Parkinson disease. Clin Chem 47(6):1102–1104

    PubMed  CAS  Google Scholar 

  • Boissonneault V, Plante I, Rivest S, Provost P (2009) MicroRNA-298 and microRNA-328 regulate expression of mouse beta-amyloid precursor protein-converting enzyme 1. J Biol Chem 284(4):1971–1981

    Article  PubMed  CAS  Google Scholar 

  • Bönsch D, Lenz B, Kornhuber J, Bleich S (2005) DNA hypermethylation of the alpha synuclein promoter in patients with alcoholism. Neuroreport 16(2):167–170

    Article  PubMed  Google Scholar 

  • Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurob Aging 24:197–211

    Article  Google Scholar 

  • Brami-Cherrier K, Valjent E, Hervé D, Darragh J, Corvol JC, Pages C, Arthur SJ, Girault JA, Caboche J (2005) Parsing molecular and behavioral effects of cocaine in mitogen- and stress-activated protein kinase-1-deficient mice. J Neurosci 25(49):11444–11454

    Article  PubMed  CAS  Google Scholar 

  • Burke RE, Dauer, Vonsattel JPG (2008) A critical evaluation of the Braak staging scheme for Parkinson’s disease. Ann Neurol 64:485–491

    Article  PubMed  Google Scholar 

  • Caccamo A, Maldonado MA, Bokov AF, Majumder S, Oddo S (2010) CBP gene transfer increases BDNF levels and ameliorates learning and memory deficits in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 107(52):22687–22692

    Article  PubMed  CAS  Google Scholar 

  • Chen PS, Peng GS, Li G, Yang S, Wu X, Wang CC, Wilson B, Lu RB, Gean PW, Chuang DM, Hong JS (2006) Valproate protects dopaminergic neurons in midbrain neuron/glia cultures by stimulating the release of neurotrophic factors from astrocytes. Mol Psychiatry 11(12):1116–1125

    Article  PubMed  CAS  Google Scholar 

  • Darmopil S, Martín AB, De Diego IR, Ares S, Moratalla R (2009) Genetic inactivation of dopamine D1 but not D2 receptors inhibits L-DOPA-induced dyskinesia and histone activation. Biol Psychiatry 66(6):603–613

    Article  PubMed  CAS  Google Scholar 

  • Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909

    Article  PubMed  CAS  Google Scholar 

  • de Mena L, Coto E, Cardo LF, Díaz M, Blázquez M, Ribacoba R, Salvador C, Pastor P, Samaranch L, Moris G, Menéndez M, Corao A, Alvarez V (2010) Analysis of the Micro-RNA-133 and PITX3 genes in Parkinson’s disease. Am J Med Genet B 153B(6):1234–1239

    Google Scholar 

  • Desplats P, Spencer B, Coffee E, Patel P, Michael S, Patrick C, Adame A, Rockenstein E, Masliah E (2011) Alpha-synuclein sequesters Dnmt1 from the nucleus: a novel mechanism for epigenetic alterations in Lewy body diseases. J Biol Chem 286(11):9031–9037

    Article  PubMed  CAS  Google Scholar 

  • Dolinoy DC, Jirtle RL (2008) Environmental epigenomics in human health and disease. Environ Mol Mutagen 49:4–8

    Article  PubMed  CAS  Google Scholar 

  • Duan W, Ladenheim B, Cutler RG, Kruman II, Cadet JL, Mattson MP (2002) Dietary folate deficiency and elevated homocysteine levels endanger dopaminergic neurons in models of Parkinson’s disease. J Neurochem 80(1):101–110

    Article  PubMed  CAS  Google Scholar 

  • Ertekin-Taner N (2007) Genetics of Alzheimer’s disease: a centennial review. Neurol Clin 25:611–667

    Article  PubMed  Google Scholar 

  • Fabbrini G, Brotchie JM, Grandas F, Nomoto M, Goetz CG (2007) Levodopa-induced dyskinesias. Mov Disord 22(10):1379–1389

    Google Scholar 

  • Farrer MJ (2006) Genetics of Parkinson disease: paradigm shifts and future prospects. Nat Rev Genet 7:306–318

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein JD (2000) Pathways and regulation of homocysteine metabolism in mammals. Semin Thromb Hemost 26(3):219–225

    Article  PubMed  CAS  Google Scholar 

  • Francis YI, Fà M, Ashrafa H, Zhanga H, Staniszewskia A, Latchmanb DS, Arancioa O (2009) Dysregulation of histone acetylation in the APP/PS1 mouse model of Alzheimer’s disease. J Alzheimers Dis 18:131–139

    PubMed  CAS  Google Scholar 

  • Frieling H, Gozner A, Römer KD, Lenz B, Bönsch D, Wilhelm J, Hillemacher T, de Zwaan M, Kornhuber J, Bleich S (2007) Global DNA hypomethylation and DNA hypermethylation of the alpha synuclein promoter in females with anorexia nervosa. Mol Psychiatry 12(3):229–230

    Article  PubMed  CAS  Google Scholar 

  • Fuso A, Seminara L, Cavallaro RA, D’Anselmi F, Scarpa S (2005) S-adenosylmethionine/homocysteine cycle alterations modify DNA methylation status with consequent deregulation of PS1 and BACE and beta-amyloid production. Mol Cell Neurosci 28:195–204

    Article  PubMed  CAS  Google Scholar 

  • Fuso A, Nicolia V, Cavallaro RA, Ricceri L, D’Anselmi F, Coluccia P, Calamandrei G, Scarpa S (2008) B-vitamin deprivation induces hyperhomocysteinemia and brain S-adenosylhomocysteine, depletes brain S-adenosylmethionine, and enhances PS1 and BACE expression and amyloid-beta deposition in mice. Mol Cell Neurosci 37(4):731–746

    Article  PubMed  CAS  Google Scholar 

  • Fuso A, Nicolia V, Pasqualato A, Fiorenza MT, Cavallaro RA, Scarpa S (2011a) Changes in Presenilin 1 gene methylation pattern in diet-induced B vitamin deficiency. Neurobiol Aging 32(2):187–199

    Article  PubMed  CAS  Google Scholar 

  • Fuso A, Nicolia V, Cavallaro RA, Scarpa S (2011b) DNA methylase and demethylase activities are modulated by one-carbon metabolism in Alzheimer’s disease models. J Nutr Biochem 22(3):242–251

    Article  PubMed  CAS  Google Scholar 

  • Giles WH, Kittner SJ, Anda RF, Croft JB, Casper ML (1995) Serum folate and risk for ischemic stroke. First National Health and Nutrition Examination Survey epidemiologic follow-up study. Stroke 26(7):1166–1170

    Article  PubMed  CAS  Google Scholar 

  • Gillardon F, Mack M, Rist W, Schnack C, Lenter M, Hildebrandt T, Hengerer B (2008) MicroRNA and proteome expression profiling in early-symptomatic α-synuclein(A30P)-transgenic mice. Proteomics Clin Appl 2(5):697–705

    Article  PubMed  CAS  Google Scholar 

  • Hardy J, Lewis P, Revesz T, Lees A, Paisan-Ruiz C (2009) The genetics of Parkinson’s syndromes: a critical review. Curr Opin Genet Dev 19:254–265

    Article  PubMed  CAS  Google Scholar 

  • Hébert SS, De Strooper B (2009) Alterations of the microRNA network cause neurodegenerative disease. Trends Neurosci 32(4):199–206

    Article  PubMed  Google Scholar 

  • Jiang Q, Ren Y, Feng J (2008) Direct binding with histone deacetylase 6 mediates the reversible recruitment of parkin to the centrosome. J Neurosci 28(48):12993–13002

    Article  PubMed  CAS  Google Scholar 

  • Jowaed A, Schmitt I, Kaut O, Wüllner U (2010) Methylation regulates alpha-synuclein expression and is decreased in Parkinson’s disease patients’ brains. J Neurosci 30(18):6355–6359

    Article  PubMed  CAS  Google Scholar 

  • Junn E, Lee K-W, Jeong BS, Chan TW, J-Y IM, Mouradian MM (2009) Repression of α-synuclein expression and toxicity by microRNA-7. Proc Natl Acad Sci 106(31):13052–13057

    Article  PubMed  CAS  Google Scholar 

  • Khandhar SM, Marks WJ (2007) Epidemiology of Parkinson’s disease. Dis Mon 53:200–205

    Article  PubMed  Google Scholar 

  • Kilgore M, Miller CA, Fass DM, Hennig KM, Haggarty SJ, Sweatt JD, Rumbaugh G (2010) Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer’s disease. Neuropsychopharmacology 35(4):870–880

    Article  PubMed  CAS  Google Scholar 

  • Klein C, Schlossmacher MG (2007) Parkinson disease, 10 years after its genetic revolution: multiple clues to a complex disorder. Neurology 69:2093–2104

    Article  PubMed  Google Scholar 

  • Kontopoulos E, Parvin JD, Feany MB (2006) α-Synuclein acts in the nucleus to inhibit histone acetylation and promote neurotoxicity. Hum Mol Genet 15(20):3012–3023

    Article  PubMed  CAS  Google Scholar 

  • Kovalchuk O (2008) Epigenetic research sheds new light on the nature of interactions between organisms and their environment. Environ Mol Mutagen 49:1–3

    Article  PubMed  CAS  Google Scholar 

  • Lau LML, Breteler MB (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5:525–535

    Article  PubMed  Google Scholar 

  • Lambert JC, Amouyel P (2007) Genetic heterogeneity of Alzheimer’s disease: complexity and advances. Psychoneuroendocrinology 32(1):S62–S70

    Google Scholar 

  • Lukiw WJ, Zhan Y, Guo Cui J (2008) An NF-κB-sensitive Micro RNA-146a-mediated inflammatory circuit in Alzheimer disease and in stressed human brain cells. J Biol Chem 283:31315–31322

    Article  PubMed  CAS  Google Scholar 

  • Maeda T, Guan JZ, Oyama J, Higuchi Y, Makino N (2009) Aging-associated alteration of subtelomeric methylation in Parkinson’s disease. J Gerontol A Biol Sci Med Sci 64(9):949–955

    Article  PubMed  Google Scholar 

  • Marques SC, Oliveira CR, Outeiro TF, Pereira CM (2010) Alzheimer’s disease: the quest to understand complexity. J Alzheimers Dis 21(2):373–383

    PubMed  CAS  Google Scholar 

  • Matsumoto L, Takuma H, Tamaoka A, Kurisaki H, Date H, Tsuji S, Iwata A (2010) CpG demethylation enhances alpha-synuclein expression and affects the pathogenesis of Parkinson’s disease. PLoS One 5(11):e15522

    Article  PubMed  Google Scholar 

  • Minati L, Edginton T, Bruzzone MG, Giaccone G (2009) Current concepts in Alzheimer’s disease: a multidisciplinary review. Am J Alzheimers Dis Other Demen 24:95–121

    Article  PubMed  Google Scholar 

  • Monti B, Gatta V, Piretti F, Raffaelli SS, Virgili M, Contestabile A (2010) Valproic acid is neuroprotective in the rotenone rat model of Parkinson’s disease: involvement of alpha-synuclein. Neurotox Res 17(2):130–141

    Article  PubMed  CAS  Google Scholar 

  • Nicholas AP, Lubin FD, Hallett PJ, Vattem P, Ravenscroft P, Bezard E, Zhou S, Fox SH, Brotchie JM, Sweatt JD, Standaert DG (2008) Striatal histone modifications in models of levodopa-induced dyskinesia. J Neurochem 106(1):486–494

    Article  PubMed  CAS  Google Scholar 

  • Obeid R, Schadt A, Dillmann U, Kostopoulos P, Fassbender K, Herrmann W (2009) Methylation status and neurodegenerative markers in Parkinson disease. Clin Chem 55(10):1852–1860

    Article  PubMed  CAS  Google Scholar 

  • Outeiro TF, Kontopoulos E, Altmann SM, Kufareva I, Strathearn KE, Amore AM, Volk CB, Maxwell MM, Rochet JC, McLean PJ, Young AB, Abagyan R, Feany MB, Hyman BT, Kazantsev AG (2007) Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson’s disease. Science 317(5837):516–519

    Article  PubMed  CAS  Google Scholar 

  • Pacheco-Quinto J, de Turco EBR, DeRosa S, Howard A, Cruz-Sanchez F, Sambamurti K, Refolo I, Petancesk S, Pappolla MA (2006) Hyperhomocysteinemic Alzheimer’s mouse model of amyloidosis shows increased brain amyloid B peptide levels. Neurobiol Dis 22:651–656

    Article  PubMed  CAS  Google Scholar 

  • Ray WJ, Ashall F, Goate AM (1998) Molecular pathogenesis of sporadic and familial forms of Alzheimer’s disease. Mol Med Today 4:151–157

    Article  PubMed  CAS  Google Scholar 

  • Ricobaraza A, Cuadrado-Tejedor M, Pérez-Mediavilla A, Frechilla D, Del Río J, García-Osta A (2009) Phenylbutyrate ameliorates cognitive deficit and reduces tau pathology in an Alzheimer’s disease mouse model. Neuropsychopharmacology 34(7):1721–1732

    Article  PubMed  CAS  Google Scholar 

  • Ricobaraza A, Cuadrado-Tejedor M, Marco S, Pérez-Otaño I, García-Osta A (2010) Phenylbutyrate rescues dendritic spine loss associated with memory deficits in a mouse model of Alzheimer disease. Hippocampus 22(5):1040–1050

    Google Scholar 

  • Rocchi A, Pellegrini S, Siciliano G, Murri L (2003) Review: causative and susceptibility genes for Alzheimer’s disease: a review. Brain Res Bull 61:1–24

    Article  PubMed  CAS  Google Scholar 

  • Rouaux C, Jokic N, Mbebi C, Boutillier S, Loeffler JP, Boutillier AL (2003) Critical loss of CBP/p300 histone acetylase activity by caspase-6 during neurodegeneration. EMBO J 22(24):6537–6549

    Article  PubMed  CAS  Google Scholar 

  • Schipper HM, Maes OC, Chertkow HM, Wang E (2007) MicroRNA expression in Alzheimer blood mononuclear cells. Gene Regul Syst Biol 20(1):263–274

    Google Scholar 

  • Silva PNO, Gigek CO, Leal MF, Bertolucci PHF, de Labio RW, Payão SLM, Smith MAC (2008) Promoter methylation analysis of SIRT3, SMARCA5, HTERT and CDH1 genes in aging and Alzheimer’s disease. J Alzheimers Dis 13:173–176

    PubMed  CAS  Google Scholar 

  • Song C, Kanthasamy A, Anantharam V, Sun F, Kanthasamy AG (2010) Environmental neurotoxic pesticide increases histone acetylation to promote apoptosis in dopaminergic neuronal cells: relevance to epigenetic mechanisms of neurodegeneration. Mol Pharmacol 77(4):621–632

    Article  PubMed  CAS  Google Scholar 

  • Sontag E, Hladik C, Montgomery L, Luangpirom A, Mudrak I, Ogris E, White CL 3rd (2004) Downregulation of protein phosphatase 2A carboxyl methylation and methyltransferase may contribute to Alzheimer disease pathogenesis. J Neuropathol Exp Neurol 63(10):1080–1091

    PubMed  CAS  Google Scholar 

  • Sontag E, Nunbhakdi-Craig V, Sontag JM, Diaz-Arrastia R, Ogris E, Dayal S, Lentz SR, Arning E, Bottiglieri T (2007) Protein phosphatase 2A methyltransferase links homocysteine metabolism with tau and amyloid precursor protein regulation. J Neurosci 27:2751–2759

    Article  PubMed  CAS  Google Scholar 

  • St George-Hyslop PH, Petit A (2004) Molecular biology and genetics of Alzheimer’s disease. Comptes Rendus Biologies 328:119–130

    Article  Google Scholar 

  • Stozicka Z, Zilka N, Novak M (2007) Review: risk and protective factors for sporadic Alzheimer’s disease. Acta Virol 51:205–222

    PubMed  CAS  Google Scholar 

  • Tanzi RE, Bertram L (2001) New frontiers in Alzheimer’s disease genetics. Neuron 32:181–184

    Article  PubMed  CAS  Google Scholar 

  • Tohgi H, Utsugisawa K, Nagane Y, Yoshimura M, Genda Y, Ukitsu M (1999) Reduction with age in methylcytosine in the promoter region −224–101 of the amyloid precursor protein gene in autopsy human cortex. Mol Brain Res 70:288–292

    Article  PubMed  CAS  Google Scholar 

  • Vo N, Klein ME, Varlamova O, Keller DM, Yamamoto T, Goodman RH, Impey S (2005) A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci 102(45):16426–16431

    Article  PubMed  CAS  Google Scholar 

  • Voutsinas GE, Stavrou EF, Karousos G, Dasoula A, Papachatzopoulou A, Syrrou M, Verkerk AJ, van der Spek P, Patrinos GP, Stöger R, Athanassiadou A (2010) Allelic imbalance of expression and epigenetic regulation within the alpha-synuclein wild-type and p.Ala53Thr alleles in Parkinson disease. Hum Mutat 31(6):685–691

    Article  PubMed  CAS  Google Scholar 

  • Wang G, van der Walt JM, Mayhew G, Li Y, Zuchner S, Scott WK, Martin ER, Vance JM (2008a) Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of a-synuclein. Am J Hum Genet 82:283–289

    Article  PubMed  CAS  Google Scholar 

  • Wang S-C, Oelze B, Schumacher A (2008b) Age-specific epigenetic drift in late-onset Alzheimer’s disease. PLoS One 3:e2698

    Article  PubMed  Google Scholar 

  • Wang WX, Rajeev BW, Stromberg AJ, Ren N, Tang G, Huang Q, Rigoutsos I, Nelson PT (2008c) The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci 28(5):1213–1223

    Article  PubMed  Google Scholar 

  • Wang X, Liu P, Zhu H, Xu Y, Ma C, Dai X, Huang L, Liu Y, Zhang L, Qin C (2009a) miR-34a, a microRNA up-regulated in a double transgenic mouse model of Alzheimer’s disease, inhibits bcl2 translation. Brain Res Bull 80(4–5):268–273

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Wang X, Liu L, Wang X (2009b) HDAC inhibitor trichostatin A-inhibited survival of dopaminergic neuronal cells. Neurosci Lett 467(3):212–216

    Article  PubMed  CAS  Google Scholar 

  • Weintraub D, Comella CL, Horn S (2008) Parkinson’s disease- part 1: pathophysiology, symptoms, burden, diagnosis, and assessment. Am J Manag Care 14:S40–S48

    PubMed  Google Scholar 

  • Wood-Kaczmar A, Gandhi S, Wood NW (2006) Understanding the molecular causes of Parkinson’s disease. Trends Mol Med 12:521–528

    Article  PubMed  CAS  Google Scholar 

  • World Health Organization (2002) Active ageing, a policy framework. Second United Nations World assembly on Aging, Madrid, Spain. www.who.int/hpr/ageing/ActiveAgingPolicyFrame.pdf

  • Wu J, Basha MR, Brock B, Cox DP, Cardozo-Pelaez F, McPherson CA, Harry J, Rice DC, Maloney B, Chen D, Lahiri DK, Zawia NH (2008a) Alzheimer’s disease (AD)-like pathology in aged monkeys after infantile exposure to environmental metal lead (Pb): evidence for a developmental origin and environmental link for AD. J Neurosci 28:3–9

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Chen PS, Dallas S, Wilson B, Block ML, Wang CC, Kinyamu H, Lu N, Gao X, Leng Y, Chuang DM, Zhang W, Lu RB, Hong JS (2008b) Histone deacetylase inhibitors up-regulate astrocyte GDNF and BDNF gene transcription and protect dopaminergic neurons. Int J Neuropsychopharmacol 11(8):1123–1134

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

TFO is supported by a Marie Curie International Reintegration Grant (Neurofold) and an EMBO Installation Grant. SM is supported by a fellowship from Fundação para Ciência e Tecnologia (SFRH/BD/33188/2007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiago Fleming Outeiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Marques, S., Outeiro, T.F. (2013). Epigenetics in Parkinson’s and Alzheimer’s Diseases. In: Kundu, T. (eds) Epigenetics: Development and Disease. Subcellular Biochemistry, vol 61. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4525-4_22

Download citation

Publish with us

Policies and ethics