Skip to main content

Role of Epigenetic Changes in Radiation-Induced Genome Instability

  • Conference paper
  • First Online:
Radiobiology and Environmental Security

Abstract

Ionizing radiation (IR) is an important diagnostic and treatment modality, yet it is also a potent genotoxic agent that causes genome instability and carcinogenesis. While modern cancer radiation therapy has led to increased patient survival rates, the risk of radiation treatment-related complications is becoming a growing problem as radiation poses a threat to the exposed individuals and their progeny. Radiation-induced genome instability, which manifests as an elevated mutation rate (both delayed and non-targeted), chromosomal aberrations and changes in gene expression, has been well-documented in directly exposed cells and organisms. However, it has also been observed in distant, naïve, out-of-field, ‘bystander’ cells and their progeny. Enigmatically, this increased instability is even observed in the pre-conceptually exposed progeny of animals, including humans. The mechanisms by which these distal effects arise remain obscure and, recently, have been proposed to be epigenetic in nature.

Epigenetic alterations which comprise mitotically and meiotically heritable changes in gene expression that are not caused by changes in the primary DNA sequence, are increasingly being recognized for their roles in health and disease. Three major areas of epigenetics—DNA methylation, histone modifications and small RNA-mediated silencing, are known to have profound effects on controlling gene expression. Yet, the exact nature of the epigenetic changes and their precise roles in IR responses and IR-induced genome instability still need to be delineated. Here we will focus on the nature of epigenetic changes in directly exposed and bystander tissues. We will also discuss the emerging evidence that support the role of epigenetic deregulation in transgenerational effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akleev AV, Dubrova Iu E et al (2007) The effects of chronic radiation exposure on the frequency of mutations at minisatellite DNA loci in residents of the Techa Riverside Villages. Radiats Biol Radioecol 47(5):558–566

    CAS  Google Scholar 

  2. Amundson SA, Fornace AJ Jr (2003) Monitoring human radiation exposure by gene expression profiling: possibilities and pitfalls. Health Phys 85(1):36–42

    Article  CAS  Google Scholar 

  3. Amundson SA, Lee RA et al (2003) Differential responses of stress genes to low dose-rate gamma irradiation. Mol Cancer Res 1(6):445–452

    CAS  Google Scholar 

  4. Andreev SG, Eidelman YA et al (2006) Mechanistic modelling of genetic and epigenetic events in radiation carcinogenesis. Radiat Prot Dosimetry 122(1–4):335–339

    CAS  Google Scholar 

  5. Aravin AA, Sachidanandam R et al (2007) Developmentally regulated piRNA clusters implicate MILI in transposon control. Science 316(5825):744–747

    Article  CAS  Google Scholar 

  6. Aravin AA, Sachidanandam R et al (2008) A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol Cell 31(6):785–799

    Article  CAS  Google Scholar 

  7. Barber R, Plumb MA et al (2002) Elevated mutation rates in the germ line of first- and second-generation offspring of irradiated male mice. Proc Natl Acad Sci USA 99(10):6877–6882

    Article  CAS  Google Scholar 

  8. Baylin SB, Chen WY (2005) Aberrant gene silencing in tumor progression: implications for control of cancer. Cold Spring Harb Symp Quant Biol 70:427–433

    Article  CAS  Google Scholar 

  9. Baylin SB, Ohm JE (2006) Epigenetic gene silencing in cancer–a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 6(2):107–116

    Article  CAS  Google Scholar 

  10. Bernstein E, Allis CD (2005) RNA meets chromatin. Genes Dev 19(14):1635–1655

    Article  CAS  Google Scholar 

  11. Bird A (2007) Perceptions of epigenetics. Nature 447(7143):396–398

    Article  CAS  Google Scholar 

  12. Brykczynska U, Hisano M et al (2010) Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa. Nat Struct Mol Biol 17(6):679–687

    Article  CAS  Google Scholar 

  13. Carls N, Schiestl RH (1999) Effect of ionizing radiation on transgenerational appearance of p(un) reversions in mice. Carcinogenesis 20(12):2351–2354

    Article  CAS  Google Scholar 

  14. Carmell MA, Girard A et al (2007) MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev Cell 12(4):503–514

    Article  CAS  Google Scholar 

  15. Celeste A, Difilippantonio S et al (2003) H2AX haploinsufficiency modifies genomic stability and tumor susceptibility. Cell 114(3):371–383

    Article  CAS  Google Scholar 

  16. Celeste A, Fernandez-Capetillo O et al (2003) Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nat Cell Biol 5(7):675–679

    Article  CAS  Google Scholar 

  17. Chauveinc L, Giraud P et al (1998) Radiotherapy-induced solid tumors: review of the literature and risk assessment. Cancer Radiother 2(1):12–18

    CAS  Google Scholar 

  18. Cheung P, Lau P (2005) Epigenetic regulation by histone methylation and histone variants. Mol Endocrinol 19(3):563–573

    Article  CAS  Google Scholar 

  19. Criswell T, Leskov K et al (2003) Transcription factors activated in mammalian cells after clinically relevant doses of ionizing radiation. Oncogene 22(37):5813–5827

    Article  CAS  Google Scholar 

  20. Daher A, Varin M et al (1998) Effect of pre-conceptional external or internal irradiation of N5 male mice and the risk of leukemia in their offspring. Carcinogenesis 19(9):1553–1558

    Article  CAS  Google Scholar 

  21. Das PP, Bagijn MP et al (2008) Piwi and piRNAs act upstream of an endogenous siRNA pathway to suppress Tc3 transposon mobility in the Caenorhabditis elegans germline. Mol Cell 31(1):79–90

    Article  CAS  Google Scholar 

  22. Draper GJ (1989) General overview of studies of multigeneration carcinogenesis in man, particularly in relation to exposure to chemicals. IARC Sci Publ 96:275–288

    Google Scholar 

  23. Dubrova YE, Jeffreys AJ et al (1993) Mouse minisatellite mutations induced by ionizing radiation. Nat Genet 5(1):92–94

    Article  CAS  Google Scholar 

  24. Dubrova YE, Nesterov VN et al (1996) Human minisatellite mutation rate after the Chernobyl accident. Nature 380(6576):683–686

    Article  CAS  Google Scholar 

  25. Dubrova YE, Nesterov VN et al (1997) Further evidence for elevated human minisatellite mutation rate in Belarus eight years after the Chernobyl accident. Mutat Res 381(2):267–278

    Article  CAS  Google Scholar 

  26. Dubrova YE, Plumb M et al (1998) Stage specificity, dose response, and doubling dose for mouse minisatellite germ-line mutation induced by acute radiation. Proc Natl Acad Sci USA 95(11):6251–6255

    Article  CAS  Google Scholar 

  27. Dubrova YE, Plumb M et al (2000) Transgenerational mutation by radiation. Nature 405(6782):37

    Article  CAS  Google Scholar 

  28. Dubrova YE, Bersimbaev RI et al (2002) Nuclear weapons tests and human germline mutation rate. Science 295(5557):1037

    Article  CAS  Google Scholar 

  29. Dubrova YE, Ploshchanskaya OG et al (2006) Minisatellite germline mutation rate in the Techa River population. Mutat Res 602(1–2):74–82

    CAS  Google Scholar 

  30. Fabbri M, Ivan M et al (2007) Regulatory mechanisms of microRNAs involvement in cancer. Expert Opin Biol Ther 7(7):1009–1019

    Article  CAS  Google Scholar 

  31. Fan YJ, Wang Z et al (1995) Dose-response of a radiation induction of a germline mutation at a hypervariable mouse minisatellite locus. Int J Radiat Biol 68(2):177–183

    Article  CAS  Google Scholar 

  32. Farazi TA, Juranek SA et al (2008) The growing catalog of small RNAs and their association with distinct Argonaute/Piwi family members. Development 135(7):1201–1214

    Article  CAS  Google Scholar 

  33. Fei P, El-Deiry WS (2003) P53 and radiation responses. Oncogene 22(37):5774–5783

    Article  CAS  Google Scholar 

  34. Feinberg AP (2004) The epigenetics of cancer etiology. Semin Cancer Biol 14(6):427–432

    Article  CAS  Google Scholar 

  35. Feinberg AP, Vogelstein B (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301(5895):89–92

    Article  CAS  Google Scholar 

  36. Filkowski JN, Ilnytskyy Y et al (2010) Hypomethylation and genome instability in the germline of exposed parents and their progeny is associated with altered miRNA expression. Carcinogenesis 31(6):1110–1115

    Article  CAS  Google Scholar 

  37. Fraga MF, Ballestar E et al (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37(4):391–400

    Article  CAS  Google Scholar 

  38. Goldman M (1982) Ionizing radiation and its risks. West J Med 137(6):540–547

    CAS  Google Scholar 

  39. Goll MG, Bestor TH (2005) Eukaryotic cytosine methyltransferases. Annu Rev Biochem 74:481–514

    Article  CAS  Google Scholar 

  40. Grandjean V, Gounon P et al (2009) The miR-124-Sox9 paramutation: RNA-mediated epigenetic control of embryonic and adult growth. Development 136(21):3647–3655

    Article  CAS  Google Scholar 

  41. Grewal SI, Moazed D (2003) Heterochromatin and epigenetic control of gene expression. Science 301(5634):798–802

    Article  CAS  Google Scholar 

  42. Hajkova P, Erhardt S et al (2002) Epigenetic reprogramming in mouse primordial germ cells. Mech Dev 117(1–2):15–23

    Article  CAS  Google Scholar 

  43. He S, Dunn KL et al (2008) Chromatin organization and nuclear microenvironments in cancer cells. J Cell Biochem 104(6):2004–2015

    Article  CAS  Google Scholar 

  44. Holliday R (1990) DNA methylation and epigenetic inheritance. Philos Trans R Soc Lond B Biol Sci 326(1235):329–338

    Article  CAS  Google Scholar 

  45. Huang L, Snyder AR, Morgan WF (2003) Radiation-induced genomic instability and its implications for radiation carcinogenesis. Oncogene 22:5848–5854

    Article  CAS  Google Scholar 

  46. Hutvagner G, Zamore PD (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science 297(5589):2056–2060

    Article  CAS  Google Scholar 

  47. Hwang HW, Mendell JT (2006) MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 94(6):776–780

    Article  CAS  Google Scholar 

  48. Iliakis G, Wang Y et al (2003) DNA damage checkpoint control in cells exposed to ionizing radiation. Oncogene 22(37):5834–5847

    Article  CAS  Google Scholar 

  49. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254

    Article  CAS  Google Scholar 

  50. Jeggo P, Lobrich M (2006) Radiation-induced DNA damage responses. Radiat Prot Dosimetry 122(1–4):124–127

    Google Scholar 

  51. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293(5532):1074–1080

    Article  CAS  Google Scholar 

  52. Jirtle RL, Skinner MK (2007) Environmental epigenomics and disease susceptibility. Nat Rev Genet 8(4):253–262

    Article  CAS  Google Scholar 

  53. Kalinich JF, Catravas GN et al (1989) The effect of gamma radiation on DNA methylation. Radiat Res 117(2):185–197

    Article  CAS  Google Scholar 

  54. Kaup S, Grandjean V et al (2006) Radiation-induced genomic instability is associated with DNA methylation changes in cultured human keratinocytes. Mutat Res 597(1–2):87–97

    CAS  Google Scholar 

  55. Klose RJ, Bird AP (2006) Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 31(2):89–97

    Article  CAS  Google Scholar 

  56. Koturbash I, Pogribny I et al (2005) Stable loss of global DNA methylation in the radiation-target tissue–a possible mechanism contributing to radiation carcinogenesis? Biochem Biophys Res Commun 337(2):526–533

    Article  CAS  Google Scholar 

  57. Koturbash I, Rugo RE et al (2006) Irradiation induces DNA damage and modulates epigenetic effectors in distant bystander tissue in vivo. Oncogene 25(31):4267–4275

    Article  CAS  Google Scholar 

  58. Koturbash I, Boyko A et al (2007) Role of epigenetic effectors in maintenance of the long-term persistent bystander effect in spleen in vivo. Carcinogenesis 28(8):1831–1838

    Article  CAS  Google Scholar 

  59. Koturbash I, Zemp FJ et al (2008) Sex-specific microRNAome deregulation in the shielded bystander spleen of cranially exposed mice. Cell Cycle 7(11):1658–1667

    Article  CAS  Google Scholar 

  60. Kovalchuk O, Burke P et al (2004) Methylation changes in muscle and liver tissues of male and female mice exposed to acute and chronic low-dose X-ray-irradiation. Mutat Res 548(1–2):75–84

    CAS  Google Scholar 

  61. Kovalchuk O, Zemp FJ et al (2010) microRNAome changes in bystander three-dimensional human tissue models suggest priming of apoptotic pathways. Carcinogenesis 31(10):1882–1888

    Article  CAS  Google Scholar 

  62. Lane N, Dean W et al (2003) Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse. Genesis 35(2):88–93

    Article  CAS  Google Scholar 

  63. Liang G, Chan MF et al (2002) Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Mol Cell Biol 22(2):480–491

    Article  CAS  Google Scholar 

  64. Little JB (2000) Radiation carcinogenesis. Carcinogenesis 21(3):397–404

    Article  CAS  Google Scholar 

  65. Little MP (2003) Risks associated with ionizing radiation. Br Med Bull 68:259–275

    Article  CAS  Google Scholar 

  66. Lord BI (1999) Transgenerational susceptibility to leukaemia induction resulting from preconception, paternal irradiation. Int J Radiat Biol 75(7):801–810

    Article  CAS  Google Scholar 

  67. Lord BI, Woolford LB et al (1998) Tumour induction by methyl-nitroso-urea following preconceptional paternal contamination with plutonium-239. Br J Cancer 78(3):301–311

    Article  CAS  Google Scholar 

  68. Loree J, Koturbash I et al (2006) Radiation-induced molecular changes in rat mammary tissue: possible implications for radiation-induced carcinogenesis. Int J Radiat Biol 82(11):805–815

    Article  CAS  Google Scholar 

  69. Luke GA, Riches AC et al (1997) Genomic instability in haematopoietic cells of F1 generation mice of irradiated male parents. Mutagenesis 12(3):147–152

    Article  CAS  Google Scholar 

  70. Luning KG, Frolen H et al (1976) Genetic effects of 239Pu salt injections in male mice. Mutat Res 34(3):539–542

    Article  CAS  Google Scholar 

  71. Minamoto T, Mai M et al (1999) Environmental factors as regulators and effectors of multistep carcinogenesis. Carcinogenesis 20(4):519–527

    Article  CAS  Google Scholar 

  72. Mohr U, Dasenbrock C et al (1999) Possible carcinogenic effects of X-rays in a transgenerational study with CBA mice. Carcinogenesis 20(2):325–332

    Article  CAS  Google Scholar 

  73. Mole RH (1979) Radiation effects on pre-natal development and their radiological significance. Br J Radiol 52(614):89–101

    Article  CAS  Google Scholar 

  74. Muegge K (2005) Lsh, a guardian of heterochromatin at repeat elements. Biochem Cell Biol 83(4):548–554

    Article  CAS  Google Scholar 

  75. Niwa O, Fan YJ et al (1996) Induction of a germline mutation at a hypervariable mouse minisatellite locus by 252Cf radiation. J Radiat Res (Tokyo) 37(3):217–224

    Article  CAS  Google Scholar 

  76. Nomura T (1982) Parental exposure to x rays and chemicals induces heritable tumours and anomalies in mice. Nature 296(5857):575–577

    Article  CAS  Google Scholar 

  77. Nomura T (1983) X-ray-induced germ-line mutation leading to tumors. Its manifestation in mice given urethane post-natally. Mutat Res 121(1):59–65

    Article  CAS  Google Scholar 

  78. Nomura T (1989) Role of radiation-induced mutations in multigeneration carcinogenesis. IARC Sci Publ 96:375–387

    Google Scholar 

  79. Nomura T (2006) Transgenerational effects of radiation and chemicals in mice and humans. J Radiat Res (Tokyo) 47(Suppl B):B83–B97

    Article  CAS  Google Scholar 

  80. Nomura T, Nakajima H et al (2004) Transgenerational transmission of radiation- and chemically induced tumors and congenital anomalies in mice: studies of their possible relationship to induced chromosomal and molecular changes. Cytogenet Genome Res 104(1–4):252–260

    Article  CAS  Google Scholar 

  81. Okano M, Bell DW et al (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99(3):247–257

    Article  CAS  Google Scholar 

  82. Pilch DR, Sedelnikova OA et al (2003) Characteristics of gamma-H2AX foci at DNA double-strand breaks sites. Biochem Cell Biol 81(3):123–129

    Article  CAS  Google Scholar 

  83. Pogribny I, Raiche J et al (2004) Dose-dependence, sex- and tissue-specificity, and persistence of radiation-induced genomic DNA methylation changes. Biochem Biophys Res Commun 320(4):1253–1261

    Article  CAS  Google Scholar 

  84. Pogribny I, Koturbash I et al (2005) Fractionated low-dose radiation exposure leads to accumulation of DNA damage and profound alterations in DNA and histone methylation in the murine thymus. Mol Cancer Res 3(10):553–561

    Article  CAS  Google Scholar 

  85. Powell SN, Kachnic LA (2003) Roles of BRCA1 and BRCA2 in homologous recombination, DNA replication fidelity and the cellular response to ionizing radiation. Oncogene 22(37):5784–5791

    Article  CAS  Google Scholar 

  86. Raiche J, Rodriguez-Juarez R et al (2004) Sex- and tissue-specific expression of maintenance and de novo DNA methyltransferases upon low dose X-irradiation in mice. Biochem Biophys Res Commun 325(1):39–47

    Article  CAS  Google Scholar 

  87. Rassoulzadegan M, Grandjean V et al (2006) RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse. Nature 441(7092):469–474

    Article  CAS  Google Scholar 

  88. Rassoulzadegan M, Grandjean V et al (2007) Inheritance of an epigenetic change in the mouse: a new role for RNA. Biochem Soc Trans 35(Pt 3):623–625

    CAS  Google Scholar 

  89. Robertson KD (2001) DNA methylation, methyltransferases, and cancer. Oncogene 20(24):3139–3155

    Article  CAS  Google Scholar 

  90. Robertson KD (2002) DNA methylation and chromatin–unraveling the tangled web. Oncogene 21(35):5361–5379

    Article  CAS  Google Scholar 

  91. Robertson KD, Wolffe AP (2000) DNA methylation in health and disease. Nat Rev Genet 1(1):11–19

    Article  CAS  Google Scholar 

  92. Rodemann HP, Blaese MA (2007) Responses of normal cells to ionizing radiation. Semin Radiat Oncol 17(2):81–88

    Article  Google Scholar 

  93. Rogakou EP, Pilch DR et al (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273(10):5858–5868

    Article  CAS  Google Scholar 

  94. Rountree MR, Bachman KE et al (2001) DNA methylation, chromatin inheritance, and cancer. Oncogene 20(24):3156–3165

    Article  CAS  Google Scholar 

  95. Saha A, Wittmeyer J et al (2006) Chromatin remodelling: the industrial revolution of DNA around histones. Nat Rev Mol Cell Biol 7(6):437–447

    Article  CAS  Google Scholar 

  96. Sanders SL, Portoso M et al (2004) Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage. Cell 119(5):603–614

    Article  CAS  Google Scholar 

  97. Sedelnikova OA, Pilch DR et al (2003) Histone H2AX in DNA damage and repair. Cancer Biol Ther 2(3):233–235

    CAS  Google Scholar 

  98. Sedelnikova OA, Nakamura A et al (2007) DNA double-strand breaks form in bystander cells after microbeam irradiation of three-dimensional human tissue models. Cancer Res 67(9):4295–4302

    Article  CAS  Google Scholar 

  99. Sevignani C, Calin GA et al (2006) Mammalian microRNAs: a small world for fine-tuning gene expression. Mamm Genome 17(3):189–202

    Article  CAS  Google Scholar 

  100. Shiraishi K, Shimura T et al (2002) Persistent induction of somatic reversions of the pink-eyed unstable mutation in F1 mice born to fathers irradiated at the spermatozoa stage. Radiat Res 157(6):661–667

    Article  CAS  Google Scholar 

  101. Slovinska L, Elbertova A et al (2004) Transmission of genome damage from irradiated male rats to their progeny. Mutat Res 559(1–2):29–37

    CAS  Google Scholar 

  102. Streffer C (2006) Transgenerational transmission of radiation damage: genomic instability and congenital malformation. J Radiat Res (Tokyo) 47(Suppl B):B19–B24

    Article  CAS  Google Scholar 

  103. Tamminga J, Koturbash I et al (2008) Paternal cranial irradiation induces distant bystander DNA damage in the germline and leads to epigenetic alterations in the offspring. Cell Cycle 7(9):1238–1245

    Article  CAS  Google Scholar 

  104. Tawa R, Kimura Y et al (1998) Effects of X-ray irradiation on genomic DNA methylation levels in mouse tissues. J Radiat Res (Tokyo) 39(4):271–278

    Article  CAS  Google Scholar 

  105. Tryndyak VP, Kovalchuk O et al (2006) Loss of DNA methylation and histone H4 lysine 20 trimethylation in human breast cancer cells is associated with aberrant expression of DNA methyltransferase 1, Suv4-20 h2 histone methyltransferase and methyl-binding proteins. Cancer Biol Ther 5(1):65–70

    Article  CAS  Google Scholar 

  106. Valerie K, Yacoub A et al (2007) Radiation-induced cell signaling: inside-out and outside-in. Mol Cancer Ther 6(3):789–801

    Article  CAS  Google Scholar 

  107. Van Speybroeck L (2002) From Epigenesis to Epigenetics. Ann N Y Acad Sci 981(1):61–81

    Article  Google Scholar 

  108. Volinia S, Calin GA et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103(7):2257–2261

    Article  CAS  Google Scholar 

  109. Vorobtsova IE, Kitaev EM (1988) Urethane-induced lung adenomas in the first-generation progeny of irradiated male mice. Carcinogenesis 9(11):1931–1934

    Article  CAS  Google Scholar 

  110. Vorobtsova IE, Aliyakparova LM et al (1993) Promotion of skin tumors by 12-O-tetradecanoylphorbol-13-acetate in two generations of descendants of male mice exposed to X-ray irradiation. Mutat Res 287(2):207–216

    Article  CAS  Google Scholar 

  111. Wade PA, Archer TK (2006) Epigenetics: environmental instructions for the genome. Environ Health Perspect 114(3):A140–A141

    Article  Google Scholar 

  112. Weber M, Schubeler D (2007) Genomic patterns of DNA methylation: targets and function of an epigenetic mark. Curr Opin Cell Biol 19(3):273–280

    Article  CAS  Google Scholar 

  113. Weidman JR, Dolinoy DC et al (2007) Cancer susceptibility: epigenetic manifestation of environmental exposures. Cancer J 13(1):9–16

    Article  CAS  Google Scholar 

  114. Wiemer EA (2007) The role of microRNAs in cancer: no small matter. Eur J Cancer 43(10):1529–1544

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Kovalchuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this paper

Cite this paper

Ilnytskyy, S., Filkowski, J., Kovalchuk, O. (2012). Role of Epigenetic Changes in Radiation-Induced Genome Instability. In: Mothersill, C., Korogodina, V., Seymour, C. (eds) Radiobiology and Environmental Security. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1939-2_6

Download citation

Publish with us

Policies and ethics