Skip to main content

Fly Ash for Agriculture: Implications for Soil Properties, Nutrients, Heavy Metals, Plant Growth and Pest Control

  • Chapter
  • First Online:
Agroecology and Strategies for Climate Change

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 8))

Abstract

Annual fly ash production ranges from 2 MT in the Netherlands to 112 MT in India, whereas fly ash utilisation ranges from 100% in the Netherlands to 38% in India. Over the past few decades there has been interest in developing strategies to use fly ash in agriculture. It is indeed economical to use fly ash as a soil amendment. Reviews on fly ash in agriculture are scarce. The potential of fly ash as a resource material is due to its specific physical properties such as texture, water holding capacity, bulk density, and pH. Moreover fly ash contains almost all essential plant nutrients. Fly ash can be used as an amendment in soil. Fly ash can improve soils physical and chemical properties, reduce pest dammade on crops and increase crop yields. The amount and method of fly ash application to soil depend on the type of soil, the crop grown and fly ash characteristics. Besides positive effects fly ash may contain also toxic metals and radionuclides. Therefore use of fly ash should be done with care, notably by taking into account the uptake of metals by plants. This chapter describes the properties of fly ash, and the effect of fly ash on soil properties, nutrients, heavy metals uptake by plants, yields and pest control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adriano DC, Weber JT (2001) Influence of fly ash on soil physical properties and turf grass establishment. J Environ Qual 30:596–602

    Article  PubMed  CAS  Google Scholar 

  • Adriano DC, Woodford TA, Ciravolo TG (1978) Growth and elemental composition of corn and bean seedlings as influenced by soil application of coal ash. J Environ Qual 7:416–421

    Article  CAS  Google Scholar 

  • Adriano DC, Page AL, Elseewi AA, Chang AC, Straughan I (1980) Utilization and disposal of fly ash and other coal residues in terrestrial ecosystems: a review. J Environ Qual 9:333–344

    Article  CAS  Google Scholar 

  • Adriano DC, Weber J, Bolan NS, Paramasivam S, Koo BJ, Sajwan KS (2002) Effects of high rates of coal fl y ash on soil, turfgrass, and groundwater quality. Water Air Soil Pollut 139:365–385

    Article  CAS  Google Scholar 

  • Aitken RL, Bell LC (1985) Plant uptake and phytotoxicity of boron in Australian fly ashes. Plant Soil 84:245–257

    Article  CAS  Google Scholar 

  • Aitken RL, Campbell DJ, Bell LC (1984) Properties of Australian fly ash relevant to their agronomic utilization. Aust J Soil Res 22:443–453

    Article  CAS  Google Scholar 

  • Ajaz S, Tiyagi S (2003) Effect of different concentrations of fly-ash on the growth of cucumber plant, Cucumis sativus. Arch Agron Soil Sci 49:457–461

    Article  Google Scholar 

  • American Coal Ash Association (1998) Coal combustion product (CCP) production and use. ACAA, Alexandria. Available from: http://www.acaa-usa.org.

  • Basu M, Pande M, Bhadoria PBS, Mahapatra SC (2009) Potential fly-ash utilization in agriculture: a global review. Prog Nat Sci 19:1173–1186

    Article  CAS  Google Scholar 

  • Bern J (1976) Residues from power generation: processing, recycling and disposal, land application of waste materials, Soil Cons Soc Amer, Ankeny, Iowa, pp 226–248

    Google Scholar 

  • Bhatt MS (2006) Effect of ash in coal on the performance of coal fired thermal power plants. Part I: primary energy effects. Energ Source Part A 28:25–41

    Article  CAS  Google Scholar 

  • Bilski JJ, Alva AK, Sajwan KS (1995) Fly ash. In: Rechcigl JE (ed) Soil amendments and environmental quality. CRC Press, Boca Raton, pp 237–363

    Google Scholar 

  • Bradshaw AD, Chadwick MJ (1980) The restoration of land. Blackwell, Oxford

    Google Scholar 

  • Brake SS, Jensen RR, Mattox JM (2004) Effects of coal fly ash amended soils on trace element uptake in plants. Environ Geol 45:680–689

    Article  CAS  Google Scholar 

  • Campbell DJ, Fox WE, Aitken RL, Bell LC (1983) Physical characteristics of sands amended with fly ash. Aust J Soil Res 21:147–154

    Article  Google Scholar 

  • Carlson CL, Adriano DC (1993) Environmental impacts of coal combustion residues. J Environ Qual 22:227–247

    Article  CAS  Google Scholar 

  • Cary EE, Gilbert M, Bache CA, Gutenmann WH, Lisk DJ (1983) Elemental composition of potted vegetables and millet grown on hard coal bottom ash-amended soil. Bull Environ Contam Toxicol 31:418–423

    Google Scholar 

  • Chang AC, Lund LJ, Pagek AL, Warneke JE (1977) Physical properties of fly ash amended soils. J Environ Qual 6:267–270

    Article  CAS  Google Scholar 

  • Ciccu R, Ghiani M, Serci A, Fadda S, Peretti R, Zucca A (2003) Heavy metal immobilization in the mining-contaminated soils using various industrial wastes. Miner Eng 16:187–192

    Article  CAS  Google Scholar 

  • Coles DG, Ragain RC, Ondov JM (1978) Behaviour natural radionuclide in western coalfired power plant. Environ Sci Technol 12:442–446

    Article  CAS  Google Scholar 

  • Cope F (1962) The development of a soil from an industrial waste ash, Soil Science and Society, Trans Comm IV, V. Int Soc Soil Sci, Palmerstown, New Zealand, 859–863

    Google Scholar 

  • Davison RL, Natusch DFS, Wallace JR, Evans CA Jr (1974) Trace elements in fly ash: dependence of concentration on particle size. Environ Sci Technol 8:1107–1113

    Article  CAS  Google Scholar 

  • Dhadse S, Pramilla K, Bhagia LJ (2008) Fly ash characterization, utilization and government initiatives in India: a review. J Sci Ind Res 67:11–18

    CAS  Google Scholar 

  • Doran JW, Martens DC (1972) Molybdenum availability as influenced by application of fly ash to soil. J Environ Qual 1:186–189

    Article  CAS  Google Scholar 

  • Dwivedi S, Tripathi RD, Srivastava S, Mishra S, Shukla MK, Tiwari KK, Singh R, Rai UN (2007) Growth performance and biochemical responses of three rice (Oryza sativa L.) cultivars grown in fly-ash amendment soil. Chemosphere 67:140–151

    Article  PubMed  CAS  Google Scholar 

  • Eary LE, Rai D, Mattigod SV, Ainsworth CC (1990) Geochemical factors controlling the mobilization of inorganic constituents from fossil fuel combustion residues. ii. Review of the minor elements. J Environ Qual 19:202–214

    Article  CAS  Google Scholar 

  • El-Mogazi D, Lisk DJ, Weinstein LH (1988) A review of physical, chemical, and biological properties of fly ash and effects on agricultural ecosystems. Sci Total Environ 74:1–37

    Article  PubMed  CAS  Google Scholar 

  • Elseewi AA, Page AL (1984) Molybdenum enrichment of plants grown on fly ash treated soils. J Environ Qual 13:394–398

    Article  CAS  Google Scholar 

  • Fail JL, Wochok ZS (1977) Soyabean growth on fly ash amended strip mine spoils. Plant Soil 48:473–484

    Article  Google Scholar 

  • Furr AK, Parkinson TF, Hinrichs RA, Van Campen DR, Bache CA, Gutenmannm WH, John St Jr, Pakkala LE, Lisk DJ (1977) National survey of elements and radioactivity in fly ashes. Absorption of elements by cabbage grown in fly ash soil mixtures. Environ Sci Technol 11:1194–1201

    Article  CAS  Google Scholar 

  • Garg RN, Kalra N, Harit RC, Sharma SK (2003) Fly ash incorporation effect on soil environment of texturally variant soils. Asia Pac J Env Dev 10:59–63

    Google Scholar 

  • Gorman JM, Sencindiver JC, Horvath DJ, Singh RN, Keefer RF (2000) Erodibility of fly ash used as a topsoil substitute in mineland reclamation. J Environ Qual 29:805–811

    Article  CAS  Google Scholar 

  • Gowiak BJ, Pacyna JM (1980) Radiation dose due to atmospheric releases from coal-fired power stations. Int J Environ Stud 16:23

    Article  Google Scholar 

  • Gupta AK, Sinha S (2006) Role of Brassica juncea L. Czern. (var. vaibhav) in the phytoextraction of Ni from soil amended with fly-ash: selection of extractant for metal bioavailability. J Hazard Mater 136:371–378

    Article  PubMed  CAS  Google Scholar 

  • Gupta AK, Sinha S (2008) Decontamination and/or revegetation of fly ash dykes through naturally growing plants. J Hazard Mater 153:1078–1087

    Article  PubMed  CAS  Google Scholar 

  • Gupta AK, Sinha S (2009) Growth and metal accumulation response of Vigna radiate L. var PDM 54 (mung bean) grown on fly ash-amended soil: effect on dietary intake. Environ Geochem Health 31:463–473

    Article  PubMed  CAS  Google Scholar 

  • Gupta DK, Rai UN, Sinha S, Tripathi RD, Nautiyal BD, Rai P, Inouhe M (2004) Role of Rhizobium (CA-1) inoculation in increasing growth and metal accumulation in Cicer arietinum L. growing under fly-ash stress condition. Bulletin Environ Contam Toxicol 73:424–431

    CAS  Google Scholar 

  • Gupta AK, Dwivedi S, Sinha S, Tripathi RD, Rai UN, Singh SN (2007) Metal accumulation and growth performance of Phaseolus vulgaris grown in fly-ash amended soil. Bioresour Technol 98:3404–3407

    Article  PubMed  CAS  Google Scholar 

  • Hodgson DR, Holliday R (1966) The agronomic properties of pulverized fuel ash. Chem Ind 20:785–790

    Google Scholar 

  • Hodgson DR, Dyer D, Brown DA (1982) Neutralization and dissolution of high-calcium fly-ash. J Environ Qual 11:93–98

    Article  CAS  Google Scholar 

  • Jala S, Goyal D (2006) Flyash as a soil ameliorant for improving crop production – a review. Bioresour Technol 97:1136–47

    Article  PubMed  CAS  Google Scholar 

  • Khan MR, Khan MW (1996) The effect of fly-ash on plant growth and yield of tomato. Environ Pollut 92:105–111

    Article  PubMed  CAS  Google Scholar 

  • Kumar V, Mathur M, Sinha SS (2005) A case study: manifold increase in fly ash utilization in India. Fly Ash Utilization Programme (FAUP), TIFAC, DST, New Delhi – 110016

    Google Scholar 

  • Marchner H (1995) Mineral nutrition of higher plants. Academic, New York, pp 1–260

    Google Scholar 

  • Lee H, Ha HS, Lee CS, Lee YB, Kim PJ (2006) Fly ash effect on improving soil properties and rice productivity in Korean paddy soil. Bioresource Technol 97:1490–1497

    Google Scholar 

  • Martens DC, Schnappinger MG, Zelazny LW Jr (1970) The plant availability of potassium in fly ash. Soil Sci Soc Am Pro 34:453–456

    Article  CAS  Google Scholar 

  • Mishra M, Sahu RK, Padhy RN (2007) Growth, yield and elemental status of rice (Oryza sativa) grown in fly ash amended soils. Ecotoxicology 16:271–278

    Article  PubMed  CAS  Google Scholar 

  • Mittra BN, Karmakar S, Swain DK, Ghosh BC (2003) Fly ash—a potential source of soil amendment and a component of integrated plant nutrient supply system. Available from: <http://www.flyash.info/2003/28mit.pdf>

  • Mittra BN, Karmakar S, Swain DK, Ghosh BC (2005) Fly-ash a potential source of soil amendment and a component of integrated plant nutrient supply system. Fuel 84:1447–1451

    Article  CAS  Google Scholar 

  • Narayanasamy P, A Gnanakumar D (1989) Lignite fly-ash: a nonpolluting substance for tackling pest problems. In: Devaraj KV (ed) Progress in pollution research. University of Agricultural Sciences, Bangalore, pp 201–206

    Google Scholar 

  • Natusch DFS, Wallace JR (1974) Urban aerosol toxicity: the influence of particle size. Science 186:695–699

    Article  PubMed  CAS  Google Scholar 

  • Page AL, Elseewi AA, Straughan IR (1979) Physical and chemical properties of fly ash from coal-fired power plants with special reference to environmental impacts. Residue Rev 71:83–120

    CAS  Google Scholar 

  • Pandey V, Mishra J, Singh SN, Singh N, Yunus M, Ahmad KJ (1994) Growth response of Helianthus annuus L. grown on fly-ash amended soil. J Environ Biol 15:117–125

    Google Scholar 

  • Pandey VC, Abhilash PC, Upadhyay RN, Tewari DD (2009) Application of fly ash on the growth performance and translocation of toxic heavy metals within Cajanus cajan L.: implication for safe utilization of fly ash for agricultural production. J Hazard Mater 166:255–259

    Article  PubMed  CAS  Google Scholar 

  • Parisara (2007) Utility bonanza from dust, ENVIS newsletter, Department of forests, ecology and environment, Government of Karnataka, vol. 2 No. 6, January

    Google Scholar 

  • Pathan SM, Aylmore LAG, Colmer TD (2003) Soil properties and turf growth on a sandy soil amended with fly ash. Plant Soil 256:103–114

    Article  CAS  Google Scholar 

  • Petruzzelli G, Lubrano L, Cervelli S (1986) Heavy metal uptake by wheat seedlings grown on fly ash amended soils. Water Air Soil Pollut 32:389–395

    Google Scholar 

  • Phung HT, Lund LJ, Page AL (1978) Potential use of fly ash as a liming material. In: Adriano DC, Brisbin IL (eds) Environmental chemistry and cycling processes, CONF-760429. US Department of Commerce, Springfield, pp 504–515

    Google Scholar 

  • Plank CO, Martens DC (1974) Boron availability as influenced by application of fly ash to soil. Soil Sci Soc Am Proc 38:974–977

    Article  CAS  Google Scholar 

  • Rai UN, Gupta DK, Akhtar M, Pal A (2003) Performance of seed germination and growth of Vicia faba L. in fly-ash amended soil. J Environ Biol 24:9–15

    PubMed  CAS  Google Scholar 

  • Rautaray SK, Ghosh BC, Mittra BN (2003) Effect of fly ash, organic wastes and chemical fertilizers on yield, nutrient uptake, heavy metal content and residual fertility in a rice-mustard cropping sequence under acid lateritic soils. Bioresour Technol 90:275–283

    Article  PubMed  CAS  Google Scholar 

  • Sajwan KS, Ornes WH, Youngblood T (1995) The effect of fly ash/sewage sludge mixtures and application rates on biomass production. J Environ Sci Heal 30:1327–1337

    Article  Google Scholar 

  • Sankari SA, Narayanasamy P (2007) Bio-efficacy of fly-ash based herbal pesticides against pests of rice and vegetables. Curr Sci 92:811–816

    CAS  Google Scholar 

  • Sarangi PK, Mishra TK, Mishra PC (1997) Soil metabolism, growth and yield of Oryza sativa L. in fly ash amended soil. Indian J Environ Sci 1:17–24

    Google Scholar 

  • Sharma S (1989) Fly ash dynamics in soil water systems. Crit Rev Env Contr 19:251–275

    Article  CAS  Google Scholar 

  • Sharma S, Fulekar MH, Jayalakshmi CP, Straub CP (1989) Fly ash dynamics in soil-water systems. Crit Rev Env Contr 19:251–275

    Article  CAS  Google Scholar 

  • Singh LP, Siddiqui ZA (2003) Effects of fly ash and Helminthosporium oryzae on growth and yield of three cultiver of rice. Bioresour Technol 86:73–78

    Article  PubMed  CAS  Google Scholar 

  • Singh N, Yunus M (2000) Environmental impacts of fly-ash. In: Iqbal M, Srivastava PS, Siddiqui TO (eds) Environmental hazards: plant and people. CBS, New Delhi, pp 60–79

    Google Scholar 

  • Singh SN, Kulshreshtha K, Ahmad KJ (1997) Impact of fly ash soil amendment on seed germination, seedling growth and metal composition of Vicia faba L. Ecol Eng 9:203–208

    Article  Google Scholar 

  • Sinha S, Gupta AK (2005) Translocation of metals from fly ash amended soil in the plant of Sesbania cannabina L. Ritz: effect on antioxidants. Chemosphere 61:1204–1214

    Article  PubMed  CAS  Google Scholar 

  • Srivastava SK (2003) Recovery of sulphur from very high ash fuel and fine distributed pyritic sulphur containing coal using ferric sulphate. Fuel Process Technol 84:37–46

    Article  CAS  Google Scholar 

  • Townsend WN, Gillham EWF (1975) Pulverized fuel ash as a medium for plant growth. In: Chadwick MJ, Goodman GT (eds) The ecology of resource degradation and renewal. Blackwell, Oxford, pp 287–304

    Google Scholar 

  • Tripathi RD, Dwivedi S, Shukla MK, Mishra S, Srivastava S, Singh R, Rai UN, Gupta DK (2008) Role of blue green algae biofertilizer in ameliorating the nitrogen demand and fly-ash stress to the growth and yield of rice (Oryza sativa L.) plants. Chemosphere 70:1919–1929

    Google Scholar 

  • Vollmer AT, Turner FB, Straughan IR, Lyons CL (1982) Effects of coal precipitator ash on germination and early growth of desert annuals. Environ Exp Bot 22:409–413

    Article  Google Scholar 

  • Wong MH, Wong JWC (1986) Effects of fly ash on soil microbial activity. Environ Pollut Ser A 40:127–144

    Article  CAS  Google Scholar 

  • Wong JWC, Jiang RF, Su DC (1996) Boron availability in ash sludge mixture and its uptake by corn seedlings (Zea mays L.). Soil Sci 161:182–187

    Article  CAS  Google Scholar 

  • Yeledhalli NA, Prakash SS, Ravi MV (2008) Concentration of heavy elements and radionuclides in crops grown on Coal ash amended Red and Black soil. Karnataka J Agric Sci 21(1):125–127

    Google Scholar 

  • Yunusa IAM, Eamus D, DeSilva DL, Murray BR, Burchett MD, Skilbeck GC, Heidrich C (2006) Fly-ash: an exploitable resource for management of Australian agricultural soils. Fuel 85:2337–2344

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Amit K. Gupta and Rajeev P Singh are thankful to UOU and USM respectively for Postdoctoral fellowship and necessary help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit K. Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Gupta, A.K., Singh, R.P., Ibrahim, M.H., Lee, BK. (2012). Fly Ash for Agriculture: Implications for Soil Properties, Nutrients, Heavy Metals, Plant Growth and Pest Control. In: Lichtfouse, E. (eds) Agroecology and Strategies for Climate Change. Sustainable Agriculture Reviews, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1905-7_11

Download citation

Publish with us

Policies and ethics