Skip to main content

Intracellular Delivery: A Multifunctional and Modular Approach

  • Chapter
  • First Online:
Intracellular Delivery

Part of the book series: Fundamental Biomedical Technologies ((FBMT,volume 5))

  • 1969 Accesses

Abstract

Intracellular delivery of drugs and nucleic acids has become one of the most widely explored areas of research. However, it has become increasingly evident that it is also necessary to control the nanocarrier’s disposition within a cell. Much attention has been paid nowadays to control the distribution of the nanocarrier within the cell by using organelle targeted nanocarriers. In this review we have described various approaches developed in our laboratory for intracellular delivery of drugs and nucleic acids with lipid-based nanocarriers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

EPR:

enhanced permeability and retention

PEG:

polyethylene glycol

PEG-PE:

polyethylene glycol-phosphatidyl ethanolamine

CPPs:

cell penetrating peptides

LL:

Lipofectin® lipids

PTDs:

protein Transduction Domains

HIV-1:

human immunodeficiency virus type 1

pNP-PEG-PE:

(p-nitrophenyl) carbonyl-PEG-PE

QDs:

quantum dots

APC:

antigen presenting cells

PC:

egg phosphatidylcholine

Chol:

cholesterol

Rh:

rhodamine

DDS:

drug delivery system

STPP:

stearyl triphenyl phosphonium

Rh-123:

rhodamine-123

PCL:

paclitaxel

LSD:

lysosomal storage diseases

ERT:

enzyme replacement therapy

RhB:

octadecyl derivative of rhodamine B

C12FDG:

5-dodecanoylamino fluorescein di-β-D-galactopyranoside

References

  • Andre N, Carre M, Brasseur G, Pourroy B, Kovacic H, Briand C, Braguer D (2002) Paclitaxel targets mitochondria upstream of caspase activation in intact human neuroblastoma cells. FEBS Lett 532 (1–2):256–260

    Article  PubMed  CAS  Google Scholar 

  • Arnheiter H, Haller O (1988) Antiviral state against influenza virus neutralized by microinjection of antibodies to interferon-induced Mx proteins. Embo J 7 (5):1315–1320

    PubMed  CAS  Google Scholar 

  • Astriab-Fisher A, Sergueev D, Fisher M, Shaw BR, Juliano RL (2002) Conjugates of antisense oligonucleotides with the Tat and antennapedia cell-penetrating peptides: effects on cellular uptake, binding to target sequences, and biologic actions. Pharm Res 19 (6):744–754

    Article  PubMed  CAS  Google Scholar 

  • Bareford LM, Swaan PW (2007) Endocytic mechanisms for targeted drug delivery. Adv Drug Deliv Rev 59 (8):748–758

    Article  PubMed  CAS  Google Scholar 

  • Biswas S, Sawant RR, Koshkaryev A, Torchilin VP Novel Rhodamine 123-Conjugated Pharmaceutical Nanocarrier Targets Mitochondria. In: 37th Annual Meeting and Exposition of the Controlled Release Society, Portland, OR, USA, 2010

    Google Scholar 

  • Boddapati SV, D’Souza GG, Erdogan S, Torchilin VP, Weissig V (2008) Organelle-targeted nanocarriers: specific delivery of liposomal ceramide to mitochondria enhances its cytotoxicity in vitro and in vivo. Nano Lett 8 (8):2559–2563

    Article  PubMed  CAS  Google Scholar 

  • Boya P, Andreau K, Poncet D, Zamzami N, Perfettini JL, Metivier D, Ojcius DM, Jaattela M, Kroemer G (2003) Lysosomal membrane permeabilization induces cell death in a mitochondrion-dependent fashion. J Exp Med 197 (10):1323–1334

    Article  PubMed  CAS  Google Scholar 

  • Chakrabarti R, Wylie DE, Schuster SM (1989) Transfer of monoclonal antibodies into mammalian cells by electroporation. J Biol Chem 264 (26):15494–15500

    PubMed  CAS  Google Scholar 

  • Chen LB, Summerhayes IC, Johnson LV, Walsh ML, Bernal SD, Lampidis TJ (1982) Probing mitochondria in living cells with rhodamine 123. Cold Spring Harb Symp Quant Biol 46 Pt 1:141–155

    PubMed  Google Scholar 

  • Conner SD, Schmid SL (2003) Regulated portals of entry into the cell. Nature 422 (6927):37–44

    Article  PubMed  CAS  Google Scholar 

  • Cryan SA, Devocelle M, Moran PJ, Hickey AJ, Kelly JG (2006) Increased intracellular targeting to airway cells using octaarginine-coated liposomes: in vitro assessment of their suitability for inhalation. Mol Pharm 3 (2):104–112

    Article  PubMed  CAS  Google Scholar 

  • D’Souza GG, Weissig V (2009) Subcellular targeting: a new frontier for drug-loaded pharmaceutical nanocarriers and the concept of the magic bullet. Expert Opin Drug Deliv 6 (11):1135–1148

    Article  PubMed  Google Scholar 

  • de la Fuente JM, Berry CC (2005) Tat peptide as an efficient molecule to translocate gold nanoparticles into the cell nucleus. Bioconjug Chem 16 (5):1176–1180

    Article  PubMed  Google Scholar 

  • Dodd CH, Hsu HC, Chu WJ, Yang P, Zhang HG, Mountz JD, Jr., Zinn K, Forder J, Josephson L, Weissleder R, Mountz JM, Mountz JD (2001) Normal T-cell response and in vivo magnetic resonance imaging of T cells loaded with HIV transactivator-peptide-derived superparamagnetic nanoparticles. J Immunol Methods 256 (1–2):89–105

    Article  PubMed  CAS  Google Scholar 

  • Fan W (1999) Possible mechanisms of paclitaxel-induced apoptosis. Biochem Pharmacol 57 (11):1215–1221

    Article  PubMed  CAS  Google Scholar 

  • Frankel AD, Pabo CO (1988) Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55 (6):1189–1193

    Article  PubMed  CAS  Google Scholar 

  • Fretz MM, Koning GA, Mastrobattista E, Jiskoot W, Storm G (2004) OVCAR-3 cells internalize TAT-peptide modified liposomes by endocytosis. Biochim Biophys Acta 1665 (1–2):48–56

    PubMed  CAS  Google Scholar 

  • Futerman AH, van Meer G (2004) The cell biology of lysosomal storage disorders. Nat Rev Mol Cell Biol 5 (7):554–565.

    Article  PubMed  CAS  Google Scholar 

  • Gabizon A, Shmeeda H, Horowitz AT, Zalipsky S (2004) Tumor cell targeting of liposome-entrapped drugs with phospholipid-anchored folic acid-PEG conjugates. Adv Drug Deliv Rev 56 (8):1177–1192

    Article  PubMed  CAS  Google Scholar 

  • Grabowski GA (2008) Phenotype, diagnosis, and treatment of Gaucher’s disease. Lancet 372 (9645):1263–1271

    Article  PubMed  CAS  Google Scholar 

  • Grabowski GA, Hopkin RJ (2003) Enzyme therapy for lysosomal storage disease: principles, practice, and prospects. Annu Rev Genomics Hum Genet 4:403–436

    Article  PubMed  CAS  Google Scholar 

  • Green M, Loewenstein PM (1988) Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 55 (6):1179–1188

    Article  PubMed  CAS  Google Scholar 

  • Gregoriadis G (1978) Liposomes in the therapy of lysosomal storage diseases. Nature 275 (5682):695–696

    Article  PubMed  CAS  Google Scholar 

  • Gupta B, Levchenko TS, Torchilin VP (2005) Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides. Adv Drug Deliv Rev 57 (4):637–651

    Article  PubMed  CAS  Google Scholar 

  • Gupta B, Levchenko TS, Torchilin VP (2007) TAT peptide-modified liposomes provide enhanced gene delivery to intracranial human brain tumor xenografts in nude mice. Oncol Res 16 (8):351–359

    PubMed  Google Scholar 

  • Hoekstra D, de Boer T, Klappe K, Wilschut J (1984) Fluorescence method for measuring the kinetics of fusion between biological membranes. Biochemistry 23 (24):5675–5681

    Article  PubMed  CAS  Google Scholar 

  • Jaracz S, Chen J, Kuznetsova LV, Ojima I (2005) Recent advances in tumor-targeting anticancer drug conjugates. Bioorg Med Chem 13 (17):5043–5054

    Article  PubMed  CAS  Google Scholar 

  • Jeang KT, Xiao H, Rich EA (1999) Multifaceted activities of the HIV-1 transactivator of transcription, Tat. J Biol Chem 274 (41):28837–28840

    Article  PubMed  CAS  Google Scholar 

  • Josephson L, Tung CH, Moore A, Weissleder R (1999) High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjug Chem 10 (2):186–191

    Article  PubMed  CAS  Google Scholar 

  • Kale AA, Torchilin VP (2007a) Design, synthesis, and characterization of pH-sensitive PEG-PE conjugates for stimuli-sensitive pharmaceutical nanocarriers: the effect of substitutes at the hydrazone linkage on the ph stability of PEG-PE conjugates. Bioconjug Chem 18 (2):363–370

    Article  PubMed  CAS  Google Scholar 

  • Kale AA, Torchilin VP (2007b) Enhanced transfection of tumor cells in vivo using “Smart” pH-sensitive TAT-modified pegylated liposomes. J Drug Target 15 (7–8):538–545

    Article  PubMed  CAS  Google Scholar 

  • Kirkegaard T, Jaattela M (2009) Lysosomal involvement in cell death and cancer. Biochim Biophys Acta 1793 (4):746–754

    Article  PubMed  CAS  Google Scholar 

  • Kleemann E, Neu M, Jekel N, Fink L, Schmehl T, Gessler T, Seeger W, Kissel T (2005) Nano-carriers for DNA delivery to the lung based upon a TAT-derived peptide covalently coupled to PEG-PEI. J Control Release 109 (1–3):299–316

    Article  PubMed  CAS  Google Scholar 

  • Ko YT, Hartner WC, Kale A, Torchilin VP (2009) Gene delivery into ischemic myocardium by double-targeted lipoplexes with anti-myosin antibody and TAT peptide. Gene Ther 16 (1):52–59

    Article  PubMed  CAS  Google Scholar 

  • Koshkaryev A, Thekkedath R, Pagano C, Meerovich I, VP T Specific lysosomal targeting by liposomes modified with octadecyl-rhodamine B. In: 37th Annual Meeting and Exposition of the Controlled Release Society, Portland, OR, USA, 2010

    Google Scholar 

  • Kuwana T, Mullock BM, Luzio JP (1995) Identification of a lysosomal protein causing lipid transfer, using a fluorescence assay designed to monitor membrane fusion between rat liver endosomes and lysosomes. Biochem J 308 ( Pt 3):937–946

    PubMed  CAS  Google Scholar 

  • Lasic DD (1993) Liposomes: From Physics to Applications. Elsevier, Amsterdam

    Google Scholar 

  • Lasic DD, Martin FJ (1995) Stealth Liposomes. CRC Press, Boca Raton

    Google Scholar 

  • Levchenko TS, Rammohan R, Volodina N, Torchilin VP (2003) Tat peptide-mediated intracellular delivery of liposomes. Methods Enzymol 372:339–349

    Article  PubMed  CAS  Google Scholar 

  • Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT, Weissleder R (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18 (4):410–414

    Article  PubMed  CAS  Google Scholar 

  • Lukyanov AN, Hartner WC, Torchilin VP (2004) Increased accumulation of PEG-PE micelles in the area of experimental myocardial infarction in rabbits. J Control Release 94 (1):187–193

    Article  PubMed  CAS  Google Scholar 

  • Lukyanov AN, Torchilin VP (2004) Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. Adv Drug Deliv Rev 56 (9):1273–1289

    Article  PubMed  CAS  Google Scholar 

  • Maeda H, Bharate GY, Daruwalla J (2009) Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm 71 (3):409–419

    Article  PubMed  CAS  Google Scholar 

  • Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65 (1–2):271–284

    Article  PubMed  CAS  Google Scholar 

  • Mortensen MW, Bjorkdahl O, Sorensen PG, Hansen T, Jensen MR, Gundersen HJ, Bjornholm T (2006) Functionalization and cellular uptake of boron carbide nanoparticles. The first step toward T cell-guided boron neutron capture therapy. Bioconjug Chem 17 (2):284–290

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee S, Ghosh RN, Maxfield FR (1997) Endocytosis. Physiol Rev 77 (3):759–803

    PubMed  CAS  Google Scholar 

  • Murphy MP (1989) Slip and leak in mitochondrial oxidative phosphorylation. Biochim Biophys Acta 977 (2):123–141

    Article  PubMed  CAS  Google Scholar 

  • Nguyen J, Xie X, Neu M, Dumitrascu R, Reul R, Sitterberg J, Bakowsky U, Schermuly R, Fink L, Schmehl T, Gessler T, Seeger W, Kissel T (2008) Effects of cell-penetrating peptides and pegylation on transfection efficiency of polyethylenimine in mouse lungs. J Gene Med 10 (11):1236–1246

    Article  PubMed  CAS  Google Scholar 

  • Pappalardo JS, Quattrocchi V, Langellotti C, Di Giacomo S, Gnazzo V, Olivera V, Calamante G, Zamorano PI, Levchenko TS, Torchilin VP (2009) Improved transfection of spleen-derived antigen-presenting cells in culture using TATp-liposomes. J Control Release 134 (1):41–46

    Article  PubMed  CAS  Google Scholar 

  • Park J, Ryu J, Kim KA, Lee HJ, Bahn JH, Han K, Choi EY, Lee KS, Kwon HY, Choi SY (2002) Mutational analysis of a human immunodeficiency virus type 1 Tat protein transduction domain which is required for delivery of an exogenous protein into mammalian cells. J Gen Virol 83 (Pt 5):1173–1181

    PubMed  CAS  Google Scholar 

  • Rajendran L, Knolker HJ (2010) Simons K Subcellular targeting strategies for drug design and delivery. Nat Rev Drug Discov 9 (1):29–42

    Google Scholar 

  • Rao KS, Reddy MK, Horning JL, Labhasetwar V (2008) TAT-conjugated nanoparticles for the CNS delivery of anti-HIV drugs. Biomaterials 29 (33):4429–4438

    Article  PubMed  CAS  Google Scholar 

  • Rideout D, Bustamante A, Patel J (1994) Mechanism of inhibition of FaDu hypopharyngeal carcinoma cell growth by tetraphenylphosphonium chloride. Int J Cancer 57 (2):247–253

    Article  PubMed  CAS  Google Scholar 

  • Rotman B, Zderic JA, Edelstein M (1963) Fluorogenic substrates for beta-D-galactosidases and phosphatases derived from flurescein (3,6-dihydroxyfluoran) and its monomethylether. Proc Natl Acad Sci USA 50:1–6

    Article  PubMed  CAS  Google Scholar 

  • Sandgren S, Cheng F, Belting M (2002) Nuclear targeting of macromolecular polyanions by an HIV-Tat derived peptide. Role for cell-surface proteoglycans. J Biol Chem 277 (41):38877–38883

    Article  PubMed  CAS  Google Scholar 

  • Sawant R, Torchilin V (2010) Intracellular transduction using cell-penetrating peptides. Mol Biosyst 6 (4):628–640

    Google Scholar 

  • Sawant RM, Hurley JP, Salmaso S, Kale A, Tolcheva E, Levchenko TS, Torchilin VP (2006) “SMART  ” drug delivery systems: double-targeted pH-responsive pharmaceutical nanocarriers. Bioconjug Chem 17 (4):943–949

    Article  PubMed  CAS  Google Scholar 

  • Sawant RR, Sawant RM, Kale AA, Torchilin VP (2008) The architecture of ligand attachment to nanocarriers controls their specific interaction with target cells. J Drug Target 16 (7):596–600

    Article  PubMed  CAS  Google Scholar 

  • Sawant RR, Torchilin VP (2009) Enhanced cytotoxicity of TATp-bearing paclitaxel-loaded micelles in vitro and in vivo. Int J Pharm 374 (1–2):114–118

    Article  PubMed  CAS  Google Scholar 

  • Schwarze SR, Dowdy SF (2000) In vivo protein transduction: intracellular delivery of biologically active proteins, compounds and DNA. Trends Pharmacol Sci 21 (2):45–48

    Article  PubMed  CAS  Google Scholar 

  • Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF (1999) In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285 (5433):1569–1572

    Article  PubMed  CAS  Google Scholar 

  • Sethuraman VA, Bae YH (2007) TAT peptide-based micelle system for potential active targeting of anti-cancer agents to acidic solid tumors. J Control Release 118 (2):216–224

    Article  PubMed  CAS  Google Scholar 

  • Sethuraman VA, Lee MC, Bae YH (2008) A biodegradable pH-sensitive micelle system for targeting acidic solid tumors. Pharm Res 25 (3):657–666

    Article  PubMed  CAS  Google Scholar 

  • Straubinger RM, Duzgunes N, Papahadjopoulos D (1985) pH-sensitive liposomes mediate cytoplasmic delivery of encapsulated macromolecules. FEBS Lett 179 (1):148–154

    Article  PubMed  CAS  Google Scholar 

  • Stroh M, Zimmer JP, Duda DG, Levchenko TS, Cohen KS, Brown EB, Scadden DT, Torchilin VP, Bawendi MG, Fukumura D, Jain RK (2005) Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nat Med 11 (6):678–682

    Article  PubMed  CAS  Google Scholar 

  • Suk JS, Suh J, Choy K, Lai SK, Fu J, Hanes J (2006) Gene delivery to differentiated neurotypic cells with RGD and HIV Tat peptide functionalized polymeric nanoparticles. Biomaterials 27 (29):5143–5150

    Article  PubMed  CAS  Google Scholar 

  • Tkachenko AG, Xie H, Liu Y, Coleman D, Ryan J, Glomm WR, Shipton MK, Franzen S, Feldheim DL (2004) Cellular trajectories of peptide-modified gold particle complexes: comparison of nuclear localization signals and peptide transduction domains. Bioconjug Chem 15 (3):482–490

    Article  PubMed  CAS  Google Scholar 

  • Torchilin VP (2001) Structure and design of polymeric surfactant-based drug delivery systems. J Control Release 73 (2–3):137–172

    Article  PubMed  CAS  Google Scholar 

  • Torchilin VP (2004) Targeted polymeric micelles for delivery of poorly soluble drugs. Cell Mol Life Sci 61 (19–20):2549–2559

    Article  PubMed  CAS  Google Scholar 

  • Torchilin VP (2005a) Fluorescence microscopy to follow the targeting of liposomes and micelles to cells and their intracellular fate. Adv Drug Deliv Rev 57 (1):95–109

    Article  PubMed  CAS  Google Scholar 

  • Torchilin VP (2005b) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4 (2):145–160

    Article  PubMed  CAS  Google Scholar 

  • Torchilin VP (2006) Recent approaches to intracellular delivery of drugs and DNA and organelle targeting. Annu Rev Biomed Eng 8:343–375

    Article  PubMed  CAS  Google Scholar 

  • Torchilin VP (2007a) Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 24 (1):1–16

    Article  PubMed  CAS  Google Scholar 

  • Torchilin VP (2007b) Tatp-mediated intracellular delivery of pharmaceutical nanocarriers. Biochem Soc Trans 35 (Pt 4):816–820

    PubMed  CAS  Google Scholar 

  • Torchilin VP, Levchenko TS (2003) TAT-liposomes: a novel intracellular drug carrier. Curr Protein Pept Sci 4 (2):133–140

    Article  PubMed  CAS  Google Scholar 

  • Torchilin VP, Levchenko TS, Lukyanov AN, Khaw BA, Klibanov AL, Rammohan R, Samokhin GP, Whiteman KR (2001a) p-Nitrophenylcarbonyl-PEG-PE-liposomes: fast and simple attachment of specific ligands, including monoclonal antibodies, to distal ends of PEG chains via p-nitrophenylcarbonyl groups. Biochim Biophys Acta 1511 (2):397–411

    Article  PubMed  CAS  Google Scholar 

  • Torchilin VP, Levchenko TS, Rammohan R, Volodina N, Papahadjopoulos-Sternberg B, D’Souza GG (2003a) Cell transfection in vitro and in vivo with nontoxic TAT peptide-liposome-DNA complexes. Proc Natl Acad Sci USA 100 (4):1972–1977

    Article  PubMed  CAS  Google Scholar 

  • Torchilin VP, Lukyanov AN, Gao Z, Papahadjopoulos-Sternberg B (2003b) Immunomicelles: targeted pharmaceutical carriers for poorly soluble drugs. Proc Natl Acad Sci USA 100 (10):6039–6044

    Article  PubMed  CAS  Google Scholar 

  • Torchilin VP, Narula J, Halpern E, Khaw BA (1996) Poly(ethylene glycol)-coated anti-cardiac myosin immunoliposomes: factors influencing targeted accumulation in the infarcted myocardium. Biochim Biophys Acta 1279 (1):75–83

    Article  PubMed  Google Scholar 

  • Torchilin VP, Rammohan R, Weissig V, Levchenko TS (2001b) TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc Natl Acad Sci USA 98 (15):8786–8791

    Article  PubMed  CAS  Google Scholar 

  • van der Ploeg AT, Reuser AJ (2008) Pompe’s disease. Lancet 372 (9646):1342–1353

    Article  PubMed  Google Scholar 

  • Vives E, Richard JP, Rispal C, Lebleu B (2003) TAT peptide internalization: seeking the mechanism of entry. Curr Protein Pept Sci 4 (2):125–132

    Article  PubMed  CAS  Google Scholar 

  • Vult von Steyern F, Josefsson JO, Tagerud S (1996) Rhodamine B, a fluorescent probe for acidic organelles in denervated skeletal muscle. J Histochem Cytochem 44 (3):267–274

    Article  PubMed  CAS  Google Scholar 

  • Wadia JS, Stan RV, Dowdy SF (2004) Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med 10 (3):310–315

    Article  PubMed  CAS  Google Scholar 

  • Wallace DC (1999) Mitochondrial diseases in man and mouse. Science 283 (5407):1482–1488

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Mongayt D, Torchilin VP (2005) Polymeric micelles for delivery of poorly soluble drugs: preparation and anticancer activity in vitro of paclitaxel incorporated into mixed micelles based on poly(ethylene glycol)-lipid conjugate and positively charged lipids. J Drug Target 13 (1):73–80

    Article  PubMed  CAS  Google Scholar 

  • Wang TH, Wang HS, Soong YK (2000) Paclitaxel-induced cell death: where the cell cycle and apoptosis come together. Cancer 88 (11):2619–2628

    Article  PubMed  CAS  Google Scholar 

  • Weissig V, Torchilin VP (2001) Cationic bolasomes with delocalized charge centers as mitochondria-specific DNA delivery systems. Adv Drug Deliv Rev 49 (1–2):127–149

    Article  PubMed  CAS  Google Scholar 

  • Widera A, Norouziyan F, Shen WC (2003) Mechanisms of TfR-mediated transcytosis and sorting in epithelial cells and applications toward drug delivery. Adv Drug Deliv Rev 55 (11):1439–1466

    Article  PubMed  CAS  Google Scholar 

  • Yagi N, Yano Y, Hatanaka K, Yokoyama Y, Okuno H (2007) Synthesis and evaluation of a novel lipid-peptide conjugate for functionalized liposome. Bioorg Med Chem Lett 17 (9):2590–2593

    Article  PubMed  CAS  Google Scholar 

  • Zarate YA, Hopkin RJ (2008) Fabry’s disease. Lancet 372 (9647):1427–1435.

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Tang N, Liu X, Liang W, Xu W, Torchilin VP (2006) siRNA-containing liposomes modified with polyarginine effectively silence the targeted gene. J Control Release 112 (2):229–239

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Tang B, Liu X, Liu Y, Xu K, Ma J, Tong L, Yang G (2009) A highly sensitive acidic pH fluorescent probe and its application to HepG2 cells. Analyst 134 (2):367–371.

    Article  PubMed  CAS  Google Scholar 

  • Zhao M, Kircher MF, Josephson L, Weissleder R (2002) Differential conjugation of tat peptide to superparamagnetic nanoparticles and its effect on cellular uptake. Bioconjug Chem 13 (4):840–844

    Article  PubMed  CAS  Google Scholar 

  • Zhao P, Wang H, Yu M, Cao S, Zhang F, Chang J, Niu R (2010) Paclitaxel-loaded, folic-acid-targeted and TAT-peptide-conjugated polymeric liposomes: in vitro and in vivo evaluation. Pharm Res 27 (9):1914–1926

    Article  PubMed  CAS  Google Scholar 

  • Zorko M, Langel U (2005) Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv Drug Deliv Rev 57 (4):529–545

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir P. Torchilin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sawant, R.R., Torchilin, V.P. (2011). Intracellular Delivery: A Multifunctional and Modular Approach. In: Prokop, A. (eds) Intracellular Delivery. Fundamental Biomedical Technologies, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1248-5_8

Download citation

Publish with us

Policies and ethics