Skip to main content

Advertisement

Log in

Paclitaxel-Loaded, Folic-Acid-Targeted and TAT-Peptide-Conjugated Polymeric Liposomes: In Vitro and In Vivo Evaluation

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Objective

Folic acid and TAT peptide were conjugated on the octadecyl-quaternized, lysine-modified chitosan-cholesterol polymeric liposomes (FA-TATp-PLs) to investigate their potential feasibility for tumor-targeted drug delivery.

Methods

FA-TATp-PLs encapsulating paclitaxel or calcein were synthesized and characterized. Cellular uptake of PLs, FA-PLs, TATp-PLs and FA-TATp-PLs was studied by confocal laser scanning microscopy (CLSM) in folate receptor (FR)-positive KB nasopharyngeal epidermal carcinoma cells and FR-deficient A549 lung cancer cells. In vitro and in vivo antitumor activity of paclitaxel-loaded FA-TATp-PLs were also evaluated in KB and A549 cells as well as in a murine KB xenograft model.

Results

Our data showed that 80% paclitaxel released from FA-TATp-PLs in 2 weeks. Different from other various PLs, CLSM analyses showed that FA-TATp-PLs had a significantly high efficient intracellular uptake in both KB and A549 cells. These data revealed the targeting effects of folate decoration, the transmembrane ability of TAT peptide as well as a synergistic interaction between them. In addition, paclitaxel-loaded FA-TATp-PLs exhibited a more superior antitumor effect in vitro and in vivo as compared to that with Taxol®.

Conclusions

FA-TATp-PLs possessing both targeting effect and transmembrane ability may serve as a promising carrier for the intracellular delivery of therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DAPI:

4,6-Diamidino-2-phenylindole

DLS:

dynamic light scattering

DMSO:

dimethyl sulfoxide

DTT:

dithiothreitol

ER:

encapsulation rate

FA:

folic acid

FR:

folate receptor

HPLC:

high performance liquid chromatography

LE:

loading efficiency

MTT:

3-[4,5-dimethylthiazol-2-yl]-2,5-diphenltetrazolium bromide

MW:

molecular weight

OQLCS:

octadecyl-quaternized lysine modified chitosan

PBS:

phosphate-buffered saline

PLs:

Polymeric liposomes

PTX:

paclitaxel

SD:

standard deviation

SPDP:

N-succinimidyl-3-(2-pyridyldithio) propionate

TATp:

transactivating transcriptional activator peptide

TEM:

transmission electron microscopy

REFERENCES

  1. Chua DT, Sham JS, Au GK. A phase II study of docetaxel and cisplatin as first-line chemotherapy in patients with metastatic nasopharyngeal carcinoma. Oral Oncol. 2005;41:589–95.

    Article  CAS  PubMed  Google Scholar 

  2. McCarthy JS, Tannock IF, Degendorfer P, Panzarella T, Furlan M, Siu LL. A phase II trial of docetaxel and cisplatin in patients with recurrent or metastatic nasopharyngeal carcinoma. Oral Oncol. 2002;38:686–90.

    Article  CAS  PubMed  Google Scholar 

  3. Horwitz SB. Taxol (paclitaxel): mechanisms of action. Ann Oncol. 1994;5 Suppl 6:S3–6.

    PubMed  Google Scholar 

  4. Liebmann J, Cook JA, Mitchell JB. Cremophor EL, solvent for paclitaxel, and toxicity. Lancet. 1993;342:1428.

    Article  CAS  PubMed  Google Scholar 

  5. Schmitt-Sody M, Strieth S, Krasnici S, Sauer B, Schulze B, Teifel M, et al. Neovascular targeting therapy: paclitaxel encapsulated in cationic liposomes improves antitumoral efficacy. Clin Cancer Res. 2003;9:2335–41.

    CAS  PubMed  Google Scholar 

  6. Sutton D, Nasongkla N, Blanco E, Gao J. Functionalized micellar systems for cancer targeted drug delivery. Pharm Res. 2007;24:1029–46.

    Article  CAS  PubMed  Google Scholar 

  7. Fonseca C, Simoes S, Gaspar R. Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity. J Control Release. 2002;83:273–86.

    Article  CAS  PubMed  Google Scholar 

  8. Gupte A, Ciftci K. Formulation and characterization of Paclitaxel, 5-FU and Paclitaxel + 5-FU microspheres. Int J Pharm. 2004;276:93–106.

    Article  CAS  PubMed  Google Scholar 

  9. Mitra A, Lin S. Effect of surfactant on fabrication and characterization of paclitaxel-loaded polybutylcyanoacrylate nanoparticulate delivery systems. J Pharm Pharmacol. 2003;55:895–902.

    Article  CAS  PubMed  Google Scholar 

  10. Kukowska-Latallo JF, Candido KA, Cao Z, Nigavekar SS, Majoros IJ, Thomas TP, et al. Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res. 2005;65:5317–24.

    Article  CAS  PubMed  Google Scholar 

  11. Obara K, Ishihara M, Ozeki Y, Ishizuka T, Hayashi T, Nakamura S, et al. Controlled release of paclitaxel from photocrosslinked chitosan hydrogels and its subsequent effect on subcutaneous tumor growth in mice. J Control Release. 2005;110:79–89.

    Article  CAS  PubMed  Google Scholar 

  12. Ruel-Gariepy E, Shive M, Bichara A, Berrada M, Le Garrec D, Chenite A, et al. A thermosensitive chitosan-based hydrogel for the local delivery of paclitaxel. Eur J Pharm Biopharm. 2004;57:53–63.

    Article  CAS  PubMed  Google Scholar 

  13. Zentner GM, Rathi R, Shih C, McRea JC, Seo MH, Oh H, et al. Biodegradable block copolymers for delivery of proteins and water-insoluble drugs. J Control Release. 2001;72:203–15.

    Article  CAS  PubMed  Google Scholar 

  14. Debbage P. Targeted drugs and nanomedicine: present and future. Curr Pharm Des. 2009;15:153–72.

    Article  CAS  PubMed  Google Scholar 

  15. Prato M, Kostarelos K, Bianco A. Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res. 2008;41:60–8.

    Article  CAS  PubMed  Google Scholar 

  16. Wang X, Yang L, Chen ZG, Shin DM. Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin. 2008;58:97–110.

    Article  PubMed  Google Scholar 

  17. Ross JF, Chaudhuri PK, Ratnam M. Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implications. Cancer. 1994;73:2432–43.

    Article  CAS  PubMed  Google Scholar 

  18. Campbell IG, Jones TA, Foulkes WD, Trowsdale J. Folate-binding protein is a marker for ovarian cancer. Cancer Res. 1991;51:5329–38.

    CAS  PubMed  Google Scholar 

  19. Weitman SD, Weinberg AG, Coney LR, Zurawski VR, Jennings DS, Kamen BA. Cellular localization of the folate receptor: potential role in drug toxicity and folate homeostasis. Cancer Res. 1992;52:6708–11.

    CAS  PubMed  Google Scholar 

  20. Weitman SD, Lark RH, Coney LR, Fort DW, Frasca V, Zurawski Jr VR, et al. Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res. 1992;52:3396–401.

    CAS  PubMed  Google Scholar 

  21. Asoh S, Ohta S. PTD-mediated delivery of anti-cell death proteins/peptides and therapeutic enzymes. Adv Drug Deliv Rev. 2008;60:499–516.

    Article  CAS  PubMed  Google Scholar 

  22. Chauhan A, Tikoo A, Kapur AK, Singh M. The taming of the cell penetrating domain of the HIV Tat: myths and realities. J Control Release. 2007;117:148–62.

    Article  CAS  PubMed  Google Scholar 

  23. Dietz GP, Bahr M. Delivery of bioactive molecules into the cell: the Trojan horse approach. Mol Cell Neurosci. 2004;27:85–131.

    Article  CAS  PubMed  Google Scholar 

  24. Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science. 1999;285:1569–72.

    Article  CAS  PubMed  Google Scholar 

  25. Vives E. Present and future of cell-penetrating peptide mediated delivery systems: “is the Trojan horse too wild to go only to Troy?”. J Control Release. 2005;109:77–85.

    Article  CAS  PubMed  Google Scholar 

  26. Wang H, Zhao P, Liang X, Gong X, Song T, Niu R, et al. Folate-PEG coated cationic modified chitosan–cholesterol liposomes for tumor-targeted drug delivery. Biomaterials. 2010;31:4129–38.

    Article  CAS  PubMed  Google Scholar 

  27. Liang XF, Wang HJ, Luo H, Tian H, Zhang BB, Hao LJ, et al. Characterization of novel multifunctional cationic polymeric liposomes formed from octadecyl quaternized carboxymethyl chitosan/cholesterol and drug encapsulation. Langmuir. 2008;24:7147–53.

    Article  CAS  PubMed  Google Scholar 

  28. Moon C, Kwon YM, Lee WK, Park YJ, Yang VC. In vitro assessment of a novel polyrotaxane-based drug delivery system integrated with a cell-penetrating peptide. J Control Release. 2007;124:43–50.

    Article  CAS  PubMed  Google Scholar 

  29. Josephson L, Tung CH, Moore A, Weissleder R. High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjug Chem. 1999;10:186–91.

    Article  CAS  PubMed  Google Scholar 

  30. Lin JJ, Chen JS, Huang SJ, Ko JH, Wang YM, Chen TL, et al. Folic acid-Pluronic F127 magnetic nanoparticle clusters for combined targeting, diagnosis, and therapy applications. Biomaterials. 2009;30:5114–24.

    Article  CAS  PubMed  Google Scholar 

  31. Leamon CP, Low PS. Delivery of macromolecules into living cells: a method that exploits folate receptor endocytosis. Proc Natl Acad Sci USA. 1991;88:5572–6.

    Article  CAS  PubMed  Google Scholar 

  32. Zhao M, Kircher MF, Josephson L, Weissleder R. Differential conjugation of tat peptide to superparamagnetic nanoparticles and its effect on cellular uptake. Bioconjug Chem. 2002;13:840–4.

    Article  CAS  PubMed  Google Scholar 

  33. Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT, et al. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol. 2000;18:410–4.

    Article  CAS  PubMed  Google Scholar 

  34. Morita T, Horikiri Y, Suzuki T, Yoshino H. Preparation of gelatin microparticles by co-lyophilization with poly(ethylene glycol): characterization and application to entrapment into biodegradable microspheres. Int J Pharm. 2001;219:127–37.

    Article  CAS  PubMed  Google Scholar 

  35. Park MR, Han KO, Han IK, Cho MH, Nah JW, Choi YJ, et al. Degradable polyethylenimine-alt-poly(ethylene glycol) copolymers as novel gene carriers. J Control Release. 2005;105:367–80.

    Article  CAS  PubMed  Google Scholar 

  36. Kim JH, Kim YS, Park K, Lee S, Nam HY, Min KH, et al. Antitumor efficacy of cisplatin-loaded glycol chitosan nanoparticles in tumor-bearing mice. J Control Release. 2008;127:41–9.

    Article  CAS  PubMed  Google Scholar 

  37. Min KH, Park K, Kim YS, Bae SM, Lee S, Jo HG, et al. Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy. J Control Release. 2008;127:208–18.

    Article  CAS  PubMed  Google Scholar 

  38. Xu Z, Chen L, Gu W, Gao Y, Lin L, Zhang Z, et al. The performance of docetaxel-loaded solid lipid nanoparticles targeted to hepatocellular carcinoma. Biomaterials. 2009;30:226–32.

    Article  PubMed  Google Scholar 

  39. Danhier F, Lecouturier N, Vroman B, Jerome C, Marchand-Brynaert J, Feron O, et al. Paclitaxel-loaded PEGylated PLGA-based nanoparticles: in vitro and in vivo evaluation. J Control Release. 2009;133:11–7.

    Article  CAS  PubMed  Google Scholar 

  40. Kamen BA, Capdevila A. Receptor-mediated folate accumulation is regulated by the cellular folate content. Proc Natl Acad Sci. 1986.

  41. Wadia JS, Stan RV, Dowdy SF. Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med. 2004;10:310–5.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was supported by the National High Technology Development Project (the “863” project, Grant No. 2007AA021802, No. 2007AA021808, No. 2006AA02A249).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin Chang or Ruifang Niu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, P., Wang, H., Yu, M. et al. Paclitaxel-Loaded, Folic-Acid-Targeted and TAT-Peptide-Conjugated Polymeric Liposomes: In Vitro and In Vivo Evaluation. Pharm Res 27, 1914–1926 (2010). https://doi.org/10.1007/s11095-010-0196-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0196-5

KEY WORDS

Navigation