Skip to main content

Genetics of Host-Pathogen Interaction and Breeding for Durable Resistance

  • Chapter
Plant Breeding

Abstract

Disease control to achieve stable food production has been one of the challenges to wheat pathologists, geneticists and breeders during the 20th century. An understanding of disease epidemiology, genetic basis of host-pathogen interaction, search for resistance genes, and development of cultivars with built-in disease resistance to a number of important diseases has reduced the occurrence of large-scale epidemics that were common in the first half of the 20th century. Improper use of the major, race-specific type of resistance to control rapidly evolving pathogens (e.g., the rusts of wheat) has led to boom-and-bust cycles that make it necessary to replace cultivars a short time after their release. Durable resistance is based on interaction of minor, additive genes. In case of leaf and yellow rusts of wheat, accumulation of 4–5 slow rusting genes results in a high level of resistance that approaches immunity. This is the type of resistance needed in the 21st century to ensure food security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez-Zamorano R. 1995. Patogenesis de Puccinia recondita Rob. ex Desm. f. sp. tritici y la resistencia en trigo. Ph. D. thesis. Colegio Postgrad., Montecillos, Mexico. 76 pp.

    Google Scholar 

  • Ausemus E. R., Stakman E. C., Hanson E. W., Geddes W. F. and Merrit P. P. 1944. Newthatch wheat. Minn. Agric. Exp. Stn., Tech. Bull., 166.

    Google Scholar 

  • Biffen R. H. 1905. Mendel’s law of inheritance and wheat breeding. J. Agric. Sci., 1: 4–48.

    Article  Google Scholar 

  • Biffen R. H. 1907. Studies in the inheritance of disease resistance. J. Agric. Sci., 2: 109–128.

    Article  Google Scholar 

  • Borlaug N. E. 1953. New approach to the breeding of wheat varieties resistant to Puccinia graminis tritici. Phytopathology, 43: 467 (Abstr. ).

    Google Scholar 

  • Briceno F. G. 1992. Inheritance of resistance to Septoria leaf blotch in selected spring bread wheat genotypes. MS thesis. Oregon State Univ., Corvallis, USA. 86 pp.

    Google Scholar 

  • Caldwell R. M. 1968. Breeding for general and/or specific plant disease resistance. In: Proceedings of the 3rd Int. Wheat Genetics Symp., (eds. ) K. W. Finlay and K. W. Shephard, p. 263–272. Australian Academy of Sciences, Canberra, Australia.

    Google Scholar 

  • Day P. R. 1974. Genetics of Host-Parasite Interactions. Freeman, San Fransisco.

    Google Scholar 

  • Diaz de Ackermann M. and Kohli M. M. 1998. Research on Pyrenophora tritici-repentis tan spot of wheat in Uruguay. In: Helminthosporium Blights of Wheat: Spot Blotch and Tan Spot. (eds. ) E. Duveiller, H. J. Dubin, J. Reeves and A. McNab, p. 134–141. CIMMYT, Mexico.

    Google Scholar 

  • Duveiller E. and Gilchrist L. 1994. Production constraints due to Bipolaris sorokiniana in wheat: current situation and future prospects. In: Wheat in Heat Stressed Environments: Irrigated, Dry Areas and Rice-Wheat Farming Systems. (eds. ) D. A. Saunders and G. P. Hettel, p. 343–352. CIMMYT, Mexico.

    Google Scholar 

  • Dyck P. L. 1987. The association of a gene for leaf rust resistance with the chromosome 7D suppressor of stem rust resistance in common wheat. Genome, 29: 467–469.

    Article  Google Scholar 

  • Flor H. H. 1942. Inheritance of pathogenicity in Melampsora lini. Phytopathology, 32: 653–669.

    Google Scholar 

  • Flor H. H. 1947. Inheritance of reaction to rust in flax. J. Agric. Sci., 74: 241–262.

    Google Scholar 

  • Flor H. H. 1956. The complementary genic systems in flax and flax rust. Adv. Genet., 8: 29–54.

    Article  Google Scholar 

  • Fuentes-Davila G., Rajaram S. and Singh G. 1995. Inheritance of resistance to Karnal bunt (Tilletia indica Mitra) in bread wheat (Triticum aestivum L. ). Plant Breeding, 114: 250–252.

    Article  Google Scholar 

  • Gilchrist L., Rajaram S., Mujeeb-Kazi A., Van Ginkel M., Vivar H. and Pfeiffer W. 1997. Fusarium scab screening program at CIMMYT. In: Fusarium Head Scab: Global Status and Future Prospects. (eds. ) H. J. Dubin, L. Gilchrist, J. Reeves, A. McNab, CIMMYT, Mexico.

    Google Scholar 

  • Harrer J. G., Loegering W. Q. and Stakman E. C. 1944. Relationship of physiologic races of Puccinia graminis tritici to wheat improvement in southern Mexico. Phytopathology, 34: 1002 (Abstr. ).

    Google Scholar 

  • Hayes H. K., Pafker J. H. and Kurtzweil C. 1920. Genetics of rust resistance in crosses of varieties of Triticum vulgare with varieties of T. durum and T dicoccum. J. Agric. Res., 19: 523–542.

    Google Scholar 

  • Hayes H. K., Ausemus E. R., Stakman E. C., Bailey C. H., Wilson H. K., Bamberg R. H., Markley M. C., Crim R. F. and Levine M. N. 1936. Thatcher wheat. S. Bull. Minn., Agric. Exp. Stn., 325.

    Google Scholar 

  • Heisey P. W., Lantican M. A. and Dubin H. J. 1999. Assessing the benefits of international wheat breeding research: An overview of the global wheat impacts study. In: World Wheat Facts and Trends. Global Wheat Research in a Changing World: Challenges and Achievements. (ed. ) P. L. Pingali, Mexico, D. F. : CIMMYT, 1998-99. Pp 19–26.

    Google Scholar 

  • Jensen N. F. 1952. Intervarietal diversification in oat breeding. Agron. J., 44: 30–34.

    Article  Google Scholar 

  • Jlibene M., Gustafson J. P. and Rajaram S. 1992. A field disease evaluation method for selecting wheat resistant to Mycosphaerella graminicola. Plant Breed., 108: 26–32.

    Article  Google Scholar 

  • Johnson R. 1978. Practial breeding for durable resistance to rust diseases in self pollinating cereals. Euphytica, 27: 529–540.

    Article  Google Scholar 

  • Johnson R. 1988. Durable resistance to yellow (stripe) rust in wheat and its implications in plant breeding. In: Breeding Strategies for Resistance to the Rusts of Wheat, (eds. ) N. W. Simmonds and S. Rajaram, p. 63–75. CIMMYT, Mexico.

    Google Scholar 

  • Johnston C. O. and Browder L. E. 1966. Seventh revision of the international register of physiologic races of Puccinia recondita f. sp. tritici. Plant Dis. Reporter 50: 756–760.

    Google Scholar 

  • Knott D. R. 1988. Using polygenic resistance to breed for stem rust resistance in wheat. In: Breeding Strategies for Resistance to the Rusts of Wheat, (eds. ) N. W. Simmonds and S. Rajaram, p 39–47, CIMMYT, Mexico.

    Google Scholar 

  • Lehman J. S. and Shaner G. 1996. Genetic variation in latent period among isolates of Puccinia recondita f. sp. tritici on partially resistant wheat cultivars. Phytopathology, 86: 633–641.

    Article  Google Scholar 

  • Loegering W. Q. and Powers H. R. 1962. Inheritance of pathogenicity in a cross of physiological races 111 and 36 of Puccinia graminis f. sp. tritici. Phytopathology, 52: 547–554.

    Google Scholar 

  • Luig N. H. and Watson I. A. 1961. A study of inheritance of pathogenicity in Puccinia graminis var. tritici. Proc. Linn. Soc. N. S. W., 86: 217–229.

    Google Scholar 

  • Mains E. B. and Jackson H. S. 1926. Physiologic specialization in the leaf rust of wheat, Puccinia triticina Erikss. Phytopathology, 16: 89–120.

    Google Scholar 

  • Matus-Tejos I. A. 1993. Genetica de la resistencia a Septoria tritici en trigos harineros. M. S. thesis. Colegio Postgrad., Montecillos, Mexico. 82 pp.

    Google Scholar 

  • Mcintosh R. A. 1992. Close genetic linkage of genes conferring adult-plant resistance to leaf rust and stripe rust in wheat. Plant Pathol., 41: 523–527.

    Article  Google Scholar 

  • Mcintosh R. A., Hart G. E., Devos K. M., Gale M. D. and Rogers W. J. 1998. Catalogue of gene symbols for wheat. (ed. ) A. E. Slinkard, Proc. 9th Int. Wheat Genetics Symp., 2-7 Aug. 1998, Saskatoon, Canada. Vol., 5: 1–235.

    Google Scholar 

  • Mcintosh R. A. and Smith-White S. Irvine Armstrong Watson 1914-1986. 1986. Historical Records of Australian Science, 7: 405–415.

    Google Scholar 

  • McFadden E. S. 1930. A successful transfer of emmer characteristics to vulgare wheat. J. Amer. Soc. Agron., 22: 1020–1034.

    Article  Google Scholar 

  • Mehta K. C. 1929. Annual recurrence of rusts on wheat in India. (Presidential Address). Proc. Indian Sci. Congr., 16, pp. 199–223.

    Google Scholar 

  • Mehta K. C. 1933. Rusts of wheat and barley in India. A study of their annual recurrence, life-histories and physiologic forms. Indian J. Agric. Sci., 3: 939–962.

    Google Scholar 

  • Niederhauser J. S., Cervantes J. and Servin L. 1954. Late blight in Mexico and its implications. Phytopathology, 44: 406–408.

    Google Scholar 

  • Parlevliet J. E. 1975. Partial resistance of barley to leaf rust, Puccinia hordei. I. Effect of cultivar and development stage on latent period. Euphytica, 24: 21–27.

    Article  Google Scholar 

  • Parlevliet J. E. 1976. Partial resistance of barley to leaf rust, Puccinia hordei. III. The inheritance of the host plant effect on latent period in four cultivars. Euphytica, 25: 241–248.

    Article  Google Scholar 

  • Parlevliet J. E. 1986. Pleiotropic association of infection frequency and latent period of two barley cultivars partially resistant to barley leaf rust. Euphytica, 35: 267–272.

    Article  Google Scholar 

  • Person C. 1959. Gene-for-gene relationship in host:parasite systems. Can. J. Bot., 37: 1101–1130.

    Article  Google Scholar 

  • Peterson R. F., Campbell A. B. and Hannah A. E. 1948. A diagrammatic scale for estimating rust intensity of leaves and stem of cereals. Can. J. Res. Sect. C., 26: 496–500.

    Article  Google Scholar 

  • Rajaram S., Singh R. P. and Torres E. 1988. Current CIMMYT approaches in breeding wheat for rust resistance. In: Breeding Strategies for Resistance to the Rust of Wheat. (eds. ) N. W. Simmonds and S. Rajaram, CIMMYT, D. F. : Mexico. Pp 101–118.

    Google Scholar 

  • Rees R. G. and Platz G. J. 1992. Tan spot and its control — some Australian experiments. In: Advances in Tan Spot Research. (eds. ) L. J. Francl, J. M. Krupinsky and M. P. Mc Mullen, Proc. of the 2nd Int. Tan Spot Workshop, Fargo, ND, USA: North Dakota Agri. Expt. St. p 1.

    Google Scholar 

  • Roelfs A. P. 1988. Resistance to leaf rust and stem rust in wheat. In: Breeding strategies for Resistance to the Rusts of Wheat, (eds. ) Simmonds N. W. and S. Rajaram, p. 10–22. CIMMYT, Mexico.

    Google Scholar 

  • Roelfs A. P. and Martens J. W. 1988. An interrnational system of nomenclature for Puccinia graminis f. sp. tritici. Phytopathology, 78: 526–533.

    Article  Google Scholar 

  • Roelfs A. P., Singh R. P. and Saari E. E. 1992. Rust diseases of wheat: Concepts and methods of disease management. CIMMYT, Mexico, D. F. 81pp.

    Google Scholar 

  • Rubiales D. and Niks R. E. 1995. Characterisation of Lr34, a major gene conferring nonhypersensitive resistance to wheat leaf rust. Plant Dis., 79: 1208–1212.

    Article  Google Scholar 

  • Samborski D. J. and Dyck P. L. 1968. Inheritance of virulence in wheat leaf rust on the standard differential wheat varieties. Can. J. Genet. Cytol., 10: 24–32.

    Google Scholar 

  • Singh R. P. 1992a. Association between gene Lr34 for leaf rust resistance and leaf tip necrosis in wheat. Crop Sci., 32: 874–878.

    Article  Google Scholar 

  • Singh R. P. 1992b. Genetic association of leaf rust resistance gene Lr34 with adult plant resistance to stripe rust in bread wheat. Phytopathology, 82: 835–838.

    Article  Google Scholar 

  • Singh R. P. 1993. Genetic association of gene Bdv1 for tolerance to barley yellow dwarf virus with genes Lr34 and Yr18 for adult plant resistance to rusts in bread wheat. Plant Dis., 77: 1103–1106.

    Article  Google Scholar 

  • Singh R. P., Burnett P. A., Albarran M. and Rajaram S. 1993. Bdv1: a gene for tolerance to barley dwarf virus in bread wheat. Crop Sci., 33: 231–234.

    Article  Google Scholar 

  • Singh R. P. and Dubin H. J. 1997. Sustainable control of wheat diseases in Mexico. In: Memorias de 1er Simposio Internacional de Trigo (Proc. 1st International Wheat Symposium, 7-9 April, 1997, Cd. Obregon, Sonora, Mexico.

    Google Scholar 

  • Singh R. P. and Gupta A. K. 1992. Expression of wheat leaf rust resistance gene Lr34 in seedlings and adult plants. Plant Dis., 76: 489–491.

    Article  Google Scholar 

  • Singh R. P., Ma H. and Rajaram S. 1995. Genetic analysis of resistance to scab in spring wheat cultivar Frontana. Plant Dis., 79: 238–240.

    Article  Google Scholar 

  • Singh R. P., Nelson J. C. and Sorrells M. E. 2000. Mapping Yr28 and other genes for resistance to stripe rust in wheat. Crop Sci., 40: 1148–1155.

    Article  CAS  Google Scholar 

  • Singh R. P., Payne T. S. and Rajaram S. 1991. Characterisation of variability and relationship among components of partial resistance to leaf rust in CIMMYT bread wheats. Theor. Appl. Genet., 82: 674–680.

    Google Scholar 

  • Singh R. P. and Rajaram S. 1991. Resistance to Puccinia recondita f. sp. tritici in 50 Mexican bread wheat cultivars. Crop Sci., 31: 1472–1479.

    Article  Google Scholar 

  • Singh R. P. and Rajaram S. 1992. Genetics of adult-plant resistance to leaf rust in ‘Frontana’ and three CIMMYT wheats. Genome, 35: 24–31.

    Article  Google Scholar 

  • Singh R. P. and Rajaram S. 1994. Genetics of adult plant resistance to stripe rust in ten spring bread wheats. Euphytica, 72: 1–7.

    Article  Google Scholar 

  • Singh R. P., Huerta-Espino J. and Rajaram S. 2000. Achieving near-immunity to leaf and stripe rusts in wheat by combining slow rusting resistance genes. Acta Phytopathlogica Hungarica, 35: 133–139.

    CAS  Google Scholar 

  • Stakman E. C. and Harrer J. G. 1957. Principles of Plant Pathology. Ronald Press, New York.

    Google Scholar 

  • Stakman E. C. and Levine M. N. 1922. The determination of biologic forms of Puccinia graminis on Triticum spp. Minn. Agr. Exp. Sta. Tech. Bul., 8.

    Google Scholar 

  • Stakman E. C., Stewart D. M. and Loegering W. Q. 1962. Identification of physiologic races of Puccinia graminis var. tritici. U. S. Agric. Res. Serv., E-617 (rev. ).

    Google Scholar 

  • Stakman E. C., Levine M. N., Cotter R. U. and Hines L. 1934. Relation of barberry to the origin and persistence of physiologic forms of Puccinia graminis. J. Agric. Res., 48: 953–969.

    Google Scholar 

  • Stakman E. C, Levine M. N. and Wallace J. M. 1929. The value of physiologic form surveys in the study of the epidemiology of stem rust. Phytopathology, 19: 951–959.

    Google Scholar 

  • Stakman E. C. and Piemeisel F. J. 1917. A new strain of Puccinia graminis. Phytopathology, 7: 73 (Abstr. )

    Google Scholar 

  • Vanderplank J. E. 1963. Plant Diseases: Epidemics and Control. Academic Press New York and London.

    Google Scholar 

  • Van Ginkel M., Van der Schaar W. and Zhuping Y. 1996. Inheritance of resistance of scab in two wheat cultivars from Brazil and China. Plant Dis., 80: 863–867.

    Article  Google Scholar 

  • Velazquez-Cruz C. 1994. Genetica de la resistencia a Bipolaris sorokiniana en trigos harineros. M. S. thesis. Colegio Postgrad., Montecillos, Mexico. 84 pp.

    Google Scholar 

  • Villareal R. L., Mujeeb-Kazi A., Gilchrist L. and Del Toro E. 1995. Yield loss to spot blotch in spring bread wheat in warm non-traditional wheat production areas. Plant Dis., 79: 893–897.

    Article  Google Scholar 

  • Waterhouse W. L. 1929. Australian rust studies. I. Proc. Linn. Soc. N. S. W., 54: 615–680.

    Google Scholar 

  • Waterhouse W. L. 1930. Australian rust studies. III. Initial results of breeding for rust resistance. Proc. Linn. Soc. N. S. W., 55: 596–636.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H K Jain M C Kharkwal

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Singh, R.P., Rajaram, S., Saini, R.G., Huerta-Espino, J., William, M. (2004). Genetics of Host-Pathogen Interaction and Breeding for Durable Resistance. In: Jain, H.K., Kharkwal, M.C. (eds) Plant Breeding. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1040-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1040-5_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3773-0

  • Online ISBN: 978-94-007-1040-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics