MicroRNAs as Potential Engineering Targets for Improvement of CHO Cell Production Phenotypes

  • Niall Barron
  • Niraj Kumar
  • Noelia Sanchez
  • Patrick Gammell
  • Martin Clynes
Conference paper
Part of the ESACT Proceedings book series (ESACT, volume 5)

Abstract

MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression. They have been implicated in diverse cellular functions and are currently the subject of considerable interest in all aspects of cell biology. They are highly conserved evolutionarily – the first published hamster sequence (cgr-miR-21) was found to be identical to human, mouse and rat.

In this study, we discuss the identification of several differentially expressed miRNAs after shifting CHO cells from exponential growth at 37°C to growth arrest at 31°C (temperature shift). Our data suggest that these miRNAs represent attractive targets for engineering a culture process from growth phase to production phase, thereby potentially replacing or enhancing the use of temperature-shift.

Keywords

Regulate Cell Growth miRNA Array Engineering Target Stabilization Transformation Method Variation Stabilization Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Al-Fageeh, M. B., Marchant, R. J., Carden, M. J., Smales, C. M. (2006). The cold-shock response in cultured mammalian cells: harnessing the response for the improvement of recombinant protein production. Biotechnol Bioeng. 93 (5), 829–835.PubMedCrossRefGoogle Scholar
  2. Baik, J. Y., Lee, M. S., An, S. R. (2006). Initial transcriptome and proteome analyses of low culture temperature-induced expression in CHO cells producing erythropoietin. Biotechnol Bioeng. 93 (2), 361–371.PubMedCrossRefGoogle Scholar
  3. Berezikov, E., Guryev, V., van de Belt, J. (2005). Phylogenetic shadowing and computational identification of human microRNA genes. Cell. 120 (1), 21–24.PubMedCrossRefGoogle Scholar
  4. Brennecke, J., Stark, A., Russell, R. B., Cohen, S. M. (2005). Principles of microRNA-target recognition. PLoS Biol. 3 (3), e85.PubMedCrossRefGoogle Scholar
  5. Chan, J. A., Krichevsky, A. M., Kosik, K. S. (2005). MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 65 (14), 6029–6033.PubMedCrossRefGoogle Scholar
  6. Chan, S. H., Wu, C. W., Li, A. F. (2008). miR-21 microRNA expression in human gastric carcinomas and its clinical association. Anticancer Res. 28 (2A), 907–911.PubMedGoogle Scholar
  7. Charaniya, S., Karypis, G., Hu, W. S. (2009). Mining transcriptome data for function-trait relationship of hyper productivity of recombinant antibody. Biotechnol Bioeng. Apr 15;102 (6), 1654–1669.CrossRefGoogle Scholar
  8. Cheng, A. M., Byrom, M. W., Shelton, J., Ford, L. P. (2005). Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucl Acid Res. 33 (4), 1290–1297.CrossRefGoogle Scholar
  9. Cimmino, A., Calin, G. A., Fabbri, M. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. PNAS. 102 (39), 13944–13949.PubMedCrossRefGoogle Scholar
  10. Connolly, E., Melegari, M., Landgraf, P. (2008). Elevated expression of the miR-17-92 polycistron and miR-21 in hepadnavirus-associated hepatocellular carcinoma contributes to the malignant phenotype. Am J Path. 173 (3), 856–864.PubMedCrossRefGoogle Scholar
  11. Doolan, P., Melville, M., Gammell, P., Sinacore, M., Meleady, P., McCarthy, K., Francullo, L., Leonard, M., Charlebois, T., Clynes, M. (2008). Transcriptional profiling of gene expression changes in a PACE-transfected CHO DUKX cell line secreting high levels of rhBMP-2. Mol Biotechnol. Jul;39 (3), 187–199.CrossRefGoogle Scholar
  12. Dresios, J., Aschrafi, A., Owens, G. C. (2005). Cold stress-induced protein Rbm3 binds 60S ribosomal subunits, alters microRNA levels, and enhances global protein synthesis. PNAS. 102 (6), 1865–1870.PubMedCrossRefGoogle Scholar
  13. Fassnacht, D., Rössing, S., Singh, R. P., Al-Rubeai, M., Pörtner, R. (1999). Influence of bcl-2 on antibody productivity in high cell density perfusion cultures of hybridoma. Cytotechnology. Jul;30(1–3), 95–106.CrossRefGoogle Scholar
  14. Gammell, P., Barron, N., Kumar, N., Clynes, M. (2007). Initial identification of low temperature and culture stage induction of miRNA expression in suspension CHO-K1 cells. J Biotechnol. Jun 30;130(3), 213–218.CrossRefGoogle Scholar
  15. Gauthier, B. R., Wollheim, C. B. (2006). MicroRNAs: ‘ribo-regulators’ of glucose homeostasis. Nat Med. 12 (1), 36–38.PubMedCrossRefGoogle Scholar
  16. Griffiths-Jones, S., Saini, H. K., van Dongen, S., Enright, A. J. (2008). miRBase: tools for microRNA genomics. Nucl Acids Res. 36 (Database Issue), D154–D158.PubMedGoogle Scholar
  17. Gu, J., Iyer, V. R. (2006). PI3K signaling and miRNA expression during the response of quiescent human fibroblasts to distinct proliferative stimuli. Genome Biol. 7 (5), R42.PubMedCrossRefGoogle Scholar
  18. Hua, Z., Lv, Q., Ye, W. (2006). MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS ONE. 1, 116.CrossRefGoogle Scholar
  19. Huber, W., von Heydebreck, A., Sultmann, H. (2002). Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics. 18 (Suppl 1), S96–104.PubMedCrossRefGoogle Scholar
  20. Lal, A., Kim, H. H., Abdelmohsen, K. (2008). p16(INK4a) translation suppressed by miR-24. PLoS ONE. 3 (3), e1864.PubMedCrossRefGoogle Scholar
  21. Lewis, B. P., Burge, C. B., Bartel, D. P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 120 (1), 15–20.PubMedCrossRefGoogle Scholar
  22. Lewis, B. P., Shih, I. H, Jones-Rhoades, M. W., Bartel, D. P., Burge, C. B. (2003). Prediction of mammalian microRNA targets. Cell. 115, 787–798.PubMedCrossRefGoogle Scholar
  23. Lim, L. P., Glasner, M. E., Yekta, S. (2003). Vertebrate microRNA genes. Science. 299 (5612), 1540.PubMedCrossRefGoogle Scholar
  24. Majors, B. S., Betenbaugh, M. J., Pederson, N. E., Chiang, G. G. (2009). Mcl-1 overexpression leads to higher viabilities and increased production of humanized monoclonal antibody in Chinese hamster ovary cells. Biotechnol Prog. Jul–Aug;25 (4), 1161–1168.CrossRefGoogle Scholar
  25. Miska, E. A. (2005). How microRNAs control cell division, differentiation and death. Curr Opin Genet Dev. 15 (5), 563–568.PubMedCrossRefGoogle Scholar
  26. Muller, D., Katinger, H., Grillari, J. (2008). MicroRNAs as targets for engineering of CHO cell factories. Trends Biotechnol. 26 (7), 359–365.PubMedCrossRefGoogle Scholar
  27. O’Donnell, K. A., Wentzel, E. A., Zeller, K. I. (2005). c-Myc-regulated microRNAs modulate E2F1 expression. Nature. 435 (7043), 839–843.PubMedCrossRefGoogle Scholar
  28. Peng, R. W., Guetg, C., Tigges, M., Fussenegger, M. (2009). The vesicle-trafficking protein munc18b increases the secretory capacity of mammalian cells. Metab Eng. Aug 31. [Epub ahead of print].Google Scholar
  29. Pillai, R. S., Bhattacharyya, S. N., Artus, C. G. (2005). Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science. 309 (5740), 1573–1576.PubMedCrossRefGoogle Scholar
  30. Poy, M. N., Spranger, M., Stoffel, M. (2007). microRNAs and the regulation of glucose and lipid metabolism. Diabetes Obes Metab. 9 (Suppl 2), 67–73.PubMedCrossRefGoogle Scholar
  31. Schetter, A. J., Leung, S. Y., Sohn, J. J. (2008). MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA. 299 (4), 425–436.PubMedCrossRefGoogle Scholar
  32. Shapiro, G. I., Edwards, C. D., Rollins, B. J. (2000). The physiology of p16(INK4A)-mediated G1 proliferative arrest. Cell Biochem Biophys. 33 (2), 189–197.PubMedCrossRefGoogle Scholar
  33. Swiderek, H., Al-Rubeai, M. (2008). Functional genome-wide analysis of antibody producing NSO cell line cultivated at different temperatures. Biotechnol Bioeng. 100 (4), 838–838.Google Scholar
  34. Underhill, M. F., Smales, C. M. (2007). The cold-shock response in mammalian cells: investigating the HeLa cell cold-shock proteome. Cytotechnology. Apr;53(1–3), 47–53. Epub (2007) Feb 23.CrossRefGoogle Scholar
  35. Wang, Q., Huang, Z., Xue, H. (2008). MicroRNA miR-24 inhibits erythropoiesis by targeting activin type I receptor ALK4. Blood. 111 (2), 588–595.PubMedCrossRefGoogle Scholar
  36. Wlaschin, K. F., Nissom, P. M., Gatti Mde, L. (2005). EST sequencing for gene discovery in Chinese hamster ovary cells. Biotechnol Bioeng. 91 (5), 592–606PubMedCrossRefGoogle Scholar
  37. Wong, D. C., Wong, K. T., Lee, Y. Y. (2006). Transcriptional profiling of apoptotic pathways in batch and fed-batch CHO cell cultures. Biotechnol Bioeng. 94 (2), 373–382.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Niall Barron
    • 1
  • Niraj Kumar
    • 1
  • Noelia Sanchez
    • 2
  • Patrick Gammell
    • 1
    • 3
  • Martin Clynes
    • 1
  1. 1.National Institute for Cellular Biotechnology, Dublin City UniversityDublinIreland
  2. 2.National Institute for Cellular Biotechnology, Dublin City UniversityDublin 9Ireland
  3. 3.Bio-Manufacturing Sciences GroupPfizer, Inc.DublinIreland

Personalised recommendations