Skip to main content

Part of the book series: ESACT Proceedings ((ESACT,volume 5))

  • 879 Accesses

Abstract

MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression. They have been implicated in diverse cellular functions and are currently the subject of considerable interest in all aspects of cell biology. They are highly conserved evolutionarily – the first published hamster sequence (cgr-miR-21) was found to be identical to human, mouse and rat.

In this study, we discuss the identification of several differentially expressed miRNAs after shifting CHO cells from exponential growth at 37°C to growth arrest at 31°C (temperature shift). Our data suggest that these miRNAs represent attractive targets for engineering a culture process from growth phase to production phase, thereby potentially replacing or enhancing the use of temperature-shift.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Fageeh, M. B., Marchant, R. J., Carden, M. J., Smales, C. M. (2006). The cold-shock response in cultured mammalian cells: harnessing the response for the improvement of recombinant protein production. Biotechnol Bioeng. 93 (5), 829–835.

    Article  PubMed  CAS  Google Scholar 

  • Baik, J. Y., Lee, M. S., An, S. R. (2006). Initial transcriptome and proteome analyses of low culture temperature-induced expression in CHO cells producing erythropoietin. Biotechnol Bioeng. 93 (2), 361–371.

    Article  PubMed  CAS  Google Scholar 

  • Berezikov, E., Guryev, V., van de Belt, J. (2005). Phylogenetic shadowing and computational identification of human microRNA genes. Cell. 120 (1), 21–24.

    Article  PubMed  CAS  Google Scholar 

  • Brennecke, J., Stark, A., Russell, R. B., Cohen, S. M. (2005). Principles of microRNA-target recognition. PLoS Biol. 3 (3), e85.

    Article  PubMed  Google Scholar 

  • Chan, J. A., Krichevsky, A. M., Kosik, K. S. (2005). MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 65 (14), 6029–6033.

    Article  PubMed  CAS  Google Scholar 

  • Chan, S. H., Wu, C. W., Li, A. F. (2008). miR-21 microRNA expression in human gastric carcinomas and its clinical association. Anticancer Res. 28 (2A), 907–911.

    PubMed  Google Scholar 

  • Charaniya, S., Karypis, G., Hu, W. S. (2009). Mining transcriptome data for function-trait relationship of hyper productivity of recombinant antibody. Biotechnol Bioeng. Apr 15;102 (6), 1654–1669.

    Article  CAS  Google Scholar 

  • Cheng, A. M., Byrom, M. W., Shelton, J., Ford, L. P. (2005). Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucl Acid Res. 33 (4), 1290–1297.

    Article  CAS  Google Scholar 

  • Cimmino, A., Calin, G. A., Fabbri, M. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. PNAS. 102 (39), 13944–13949.

    Article  PubMed  CAS  Google Scholar 

  • Connolly, E., Melegari, M., Landgraf, P. (2008). Elevated expression of the miR-17-92 polycistron and miR-21 in hepadnavirus-associated hepatocellular carcinoma contributes to the malignant phenotype. Am J Path. 173 (3), 856–864.

    Article  PubMed  CAS  Google Scholar 

  • Doolan, P., Melville, M., Gammell, P., Sinacore, M., Meleady, P., McCarthy, K., Francullo, L., Leonard, M., Charlebois, T., Clynes, M. (2008). Transcriptional profiling of gene expression changes in a PACE-transfected CHO DUKX cell line secreting high levels of rhBMP-2. Mol Biotechnol. Jul;39 (3), 187–199.

    Article  CAS  Google Scholar 

  • Dresios, J., Aschrafi, A., Owens, G. C. (2005). Cold stress-induced protein Rbm3 binds 60S ribosomal subunits, alters microRNA levels, and enhances global protein synthesis. PNAS. 102 (6), 1865–1870.

    Article  PubMed  CAS  Google Scholar 

  • Fassnacht, D., Rössing, S., Singh, R. P., Al-Rubeai, M., Pörtner, R. (1999). Influence of bcl-2 on antibody productivity in high cell density perfusion cultures of hybridoma. Cytotechnology. Jul;30(1–3), 95–106.

    Article  CAS  Google Scholar 

  • Gammell, P., Barron, N., Kumar, N., Clynes, M. (2007). Initial identification of low temperature and culture stage induction of miRNA expression in suspension CHO-K1 cells. J Biotechnol. Jun 30;130(3), 213–218.

    Article  CAS  Google Scholar 

  • Gauthier, B. R., Wollheim, C. B. (2006). MicroRNAs: ‘ribo-regulators’ of glucose homeostasis. Nat Med. 12 (1), 36–38.

    Article  PubMed  CAS  Google Scholar 

  • Griffiths-Jones, S., Saini, H. K., van Dongen, S., Enright, A. J. (2008). miRBase: tools for microRNA genomics. Nucl Acids Res. 36 (Database Issue), D154–D158.

    PubMed  CAS  Google Scholar 

  • Gu, J., Iyer, V. R. (2006). PI3K signaling and miRNA expression during the response of quiescent human fibroblasts to distinct proliferative stimuli. Genome Biol. 7 (5), R42.

    Article  PubMed  Google Scholar 

  • Hua, Z., Lv, Q., Ye, W. (2006). MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS ONE. 1, 116.

    Article  Google Scholar 

  • Huber, W., von Heydebreck, A., Sultmann, H. (2002). Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics. 18 (Suppl 1), S96–104.

    Article  PubMed  Google Scholar 

  • Lal, A., Kim, H. H., Abdelmohsen, K. (2008). p16(INK4a) translation suppressed by miR-24. PLoS ONE. 3 (3), e1864.

    Article  PubMed  Google Scholar 

  • Lewis, B. P., Burge, C. B., Bartel, D. P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 120 (1), 15–20.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, B. P., Shih, I. H, Jones-Rhoades, M. W., Bartel, D. P., Burge, C. B. (2003). Prediction of mammalian microRNA targets. Cell. 115, 787–798.

    Article  PubMed  CAS  Google Scholar 

  • Lim, L. P., Glasner, M. E., Yekta, S. (2003). Vertebrate microRNA genes. Science. 299 (5612), 1540.

    Article  PubMed  CAS  Google Scholar 

  • Majors, B. S., Betenbaugh, M. J., Pederson, N. E., Chiang, G. G. (2009). Mcl-1 overexpression leads to higher viabilities and increased production of humanized monoclonal antibody in Chinese hamster ovary cells. Biotechnol Prog. Jul–Aug;25 (4), 1161–1168.

    Article  CAS  Google Scholar 

  • Miska, E. A. (2005). How microRNAs control cell division, differentiation and death. Curr Opin Genet Dev. 15 (5), 563–568.

    Article  PubMed  CAS  Google Scholar 

  • Muller, D., Katinger, H., Grillari, J. (2008). MicroRNAs as targets for engineering of CHO cell factories. Trends Biotechnol. 26 (7), 359–365.

    Article  PubMed  Google Scholar 

  • O’Donnell, K. A., Wentzel, E. A., Zeller, K. I. (2005). c-Myc-regulated microRNAs modulate E2F1 expression. Nature. 435 (7043), 839–843.

    Article  PubMed  Google Scholar 

  • Peng, R. W., Guetg, C., Tigges, M., Fussenegger, M. (2009). The vesicle-trafficking protein munc18b increases the secretory capacity of mammalian cells. Metab Eng. Aug 31. [Epub ahead of print].

    Google Scholar 

  • Pillai, R. S., Bhattacharyya, S. N., Artus, C. G. (2005). Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science. 309 (5740), 1573–1576.

    Article  PubMed  CAS  Google Scholar 

  • Poy, M. N., Spranger, M., Stoffel, M. (2007). microRNAs and the regulation of glucose and lipid metabolism. Diabetes Obes Metab. 9 (Suppl 2), 67–73.

    Article  PubMed  CAS  Google Scholar 

  • Schetter, A. J., Leung, S. Y., Sohn, J. J. (2008). MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA. 299 (4), 425–436.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, G. I., Edwards, C. D., Rollins, B. J. (2000). The physiology of p16(INK4A)-mediated G1 proliferative arrest. Cell Biochem Biophys. 33 (2), 189–197.

    Article  PubMed  CAS  Google Scholar 

  • Swiderek, H., Al-Rubeai, M. (2008). Functional genome-wide analysis of antibody producing NSO cell line cultivated at different temperatures. Biotechnol Bioeng. 100 (4), 838–838.

    Google Scholar 

  • Underhill, M. F., Smales, C. M. (2007). The cold-shock response in mammalian cells: investigating the HeLa cell cold-shock proteome. Cytotechnology. Apr;53(1–3), 47–53. Epub (2007) Feb 23.

    Article  CAS  Google Scholar 

  • Wang, Q., Huang, Z., Xue, H. (2008). MicroRNA miR-24 inhibits erythropoiesis by targeting activin type I receptor ALK4. Blood. 111 (2), 588–595.

    Article  PubMed  CAS  Google Scholar 

  • Wlaschin, K. F., Nissom, P. M., Gatti Mde, L. (2005). EST sequencing for gene discovery in Chinese hamster ovary cells. Biotechnol Bioeng. 91 (5), 592–606

    Article  PubMed  CAS  Google Scholar 

  • Wong, D. C., Wong, K. T., Lee, Y. Y. (2006). Transcriptional profiling of apoptotic pathways in batch and fed-batch CHO cell cultures. Biotechnol Bioeng. 94 (2), 373–382.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niall Barron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this paper

Cite this paper

Barron, N., Kumar, N., Sanchez, N., Gammell, P., Clynes, M. (2012). MicroRNAs as Potential Engineering Targets for Improvement of CHO Cell Production Phenotypes. In: Jenkins, N., Barron, N., Alves, P. (eds) Proceedings of the 21st Annual Meeting of the European Society for Animal Cell Technology (ESACT), Dublin, Ireland, June 7-10, 2009. ESACT Proceedings, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0884-6_1

Download citation

Publish with us

Policies and ethics