Skip to main content

Stable Isotopic Labeling for Proteomics

  • Chapter
  • First Online:
Sample Preparation in Biological Mass Spectrometry

Abstract

Since the coining of the term Proteome, the field of Proteomics has developed rapidly and come to rely heavily on mass spectrometry, initially for protein identification but recently the use of stable isotopic labels for protein quantitation has grown in importance. This trend has been driven by improvements in the mass spectrometers and reagents but also by the need to understand the molecular dynamics of cells. Since proteins are important effector molecules in most biochemical processes, key questions to be answered are: how much is present and when. In this chapter we describe the various methods currently available to quantitate proteins based on stable isotope protein labeling and discuss their merits as well as some of the issues still to be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACN:

Acetonitrile

AQUA:

Absolute quantification

CID:

Collision induced disassociation

CILAT:

Cleavable isobaric labeled affinity tag

ESI:

Electrospray ionisation

iCAT:

Isotopically coded affinity tags

iTRAQ:

Isobaric tags for relative and absolute quantitation

HILIC:

Hydrophilic interaction chromatography

HPLC:

High performance liquid chromatography

ICPL:

Isotope-coded protein label

ICPMS:

Inductively coupled plasma mass spectrometry

IgG:

Immunoglobulin

IPG:

Immobilized pH gradient

IPG-IEF:

Immobilized pH gradient isoelectric focusing

LC-MALDI MS/MS:

Liquid chromatography matrix assisted laser desorption ionization tandem mass spectrometry

LC-MS:

Liquid chromatography mass spectrometry

MALDI:

Matrix assisted laser desorption ionisation

MMTS:

Methyl methane-thiosulphonate

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

Nano RP LC:

Nano reversed phase liquid chromatography

NHS:

N-Hydroxysuccinamide

PBS:

Phosphate buffered saline

QconCAT:

Artificial proteins representing a quantification concatamer

qTOF MS/MS:

Quadrupole time of flight tandem mass spectrometry

RP LC:

Reversed phase liquid chromatography

SILAC:

Stable isotope labeling by amino acids in cell culture

SCX:

Strong cation exchange chromatography

SISCAPA:

Stable isotope standards and capture by anti-peptide antibodies

TCA:

Tri-chloroacetic acid

TCEP:

Tris (2-carboxyethyl) phosphine

TEAB:

Triethylammonium bicarbonate

TMT:

Tandem Mass Tag Technology

TOF/TOF:

Time of flight/time of flight

References

  • Ahrends, R., Pieper, S., Neumann, B., Scheler, C., and Linscheid, M.W. (2009). Metal-coded affinity tag labeling: A demonstration of analytical robustness and suitability for biological applications. Anal Chem 81, 2176–2184.

    Article  CAS  Google Scholar 

  • Anderson, N.L., Anderson, N.G., Haines, L.R., Hardie, D.B., Olafson, R.W., and Pearson, T.W. (2004). Mass spectrometric quantitation of peptides and proteins using stable isotope standards and capture by anti-peptide Antibodies (SISCAPA). J Proteome Res 3, 235–244.

    Article  CAS  Google Scholar 

  • Antonov, V.K., Ginodman, L.M., Rumsh, L.D., Kapitannikov, Y.V., Barshevskaya, T.N., Yavashev, L.P., Gurova, A.G., and Volkova, L.I. (1981). Studies on the mechanisms of action of proteolytic enzymes using heavy oxygen exchange. Eur J Biochem 117, 195–200.

    Article  CAS  Google Scholar 

  • Bellew, M., Coram, M., Fitzgibbon, M., Igra, M., Randolph, T., Wang, P., May, D., Eng, J., Fang, R., Lin, C., et al. (2006). A suite of algorithms for the comprehensive analysis of complex protein mixtures using high-resolution LC-MS. Bioinformatics 22, 1902–1909.

    Article  CAS  Google Scholar 

  • Bendall, S.C., Hughes, C., Stewart, M.H., Doble, B., Bhatia, M., and Lajoie, G.A. (2008). Prevention of amino acid conversion in SILAC experiments with embryonic stem cells. Mol Cell Proteomics 7, 1587–1597.

    Article  CAS  Google Scholar 

  • Berger, S.J., Lee, S.W., Anderson, G.A., Pasa-Tolic, L., Tolic, N., Shen, Y., Zhao, R., and Smith, R.D. (2002). High-throughput global peptide proteomic analysis by combining stable isotope amino acid labeling and data-dependent multiplexed-MS/MS. Anal Chem 74, 4994–5000.

    Article  CAS  Google Scholar 

  • Bettmer, J., Montes Bayon, M., Encinar, J.R., Fernandez Sanchez, M.L., Fernandez de la Campa Mdel, R., and Sanz Medel, A. (2009). The emerging role of ICP-MS in proteomic analysis. J Proteomics 72, 989–1005.

    Google Scholar 

  • Beynon, R.J., and Pratt, J.M. (2005). Metabolic labeling of proteins for proteomics. Mol Cell Proteomics 4, 857–872.

    Article  CAS  Google Scholar 

  • Bhat, V.B., Choi, M.H., Wishnok, J.S., and Tannenbaum, S.R. (2005). Comparative plasma proteome analysis of lymphoma-bearing SJL mice. J Proteome Res 4, 1814–1825.

    Article  CAS  Google Scholar 

  • Boersema, P.J., Raijmakers, R., Lemeer, S., Mohammed, S., and Heck, A.J. (2009). Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat Protoc 4, 484–494.

    Article  CAS  Google Scholar 

  • Boyer, P.D. (1954). Spectrophotometric study of the reaction of protein sulfhydryl groups with organic mercurials. J Am Chem Soc 76, 4331–4337.

    Article  CAS  Google Scholar 

  • Brusniak, M.Y., Bodenmiller, B., Campbell, D., Cooke, K., Eddes, J., Garbutt, A., Lau, H., Letarte, S., Mueller, L.N., Sharma, V., et al. (2008). Corra: Computational framework and tools for LC-MS discovery and targeted mass spectrometry-based proteomics. BMC Bioinformatics 9, 542.

    Article  Google Scholar 

  • Cargile, B.J., Sevinsky, J.R., Essader, A.S., Stephenson, J.L., Jr., and Bundy, J.L. (2005). Immobilized pH gradient isoelectric focusing as a first-dimension separation in shotgun proteomics. J Biomol Tech 16, 181–189.

    Google Scholar 

  • Chick, J.M., Haynes, P.A., Molloy, M.P., Bjellqvist, B., Baker, M.S., and Len, A.C. (2008). Characterization of the rat liver membrane proteome using peptide immobilized pH gradient isoelectric focusing. J Proteome Res 7, 1036–1045.

    Article  CAS  Google Scholar 

  • Choe, L., D’Ascenzo, M., Relkin, N.R., Pappin, D., Ross, P., Williamson, B., Guertin, S., Pribil, P., and Lee, K.H. (2007). 8-plex quantitation of changes in cerebrospinal fluid protein expression in subjects undergoing intravenous immunoglobulin treatment for Alzheimer’s disease. Proteomics 7, 3651–3660.

    Article  CAS  Google Scholar 

  • Cox, J., Matic, I., Hilger, M., Nagaraj, N., Selbach, M., Olsen, J.V., and Mann, M. (2009). A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics. Nat Protoc 4, 698–705.

    Article  CAS  Google Scholar 

  • Craig, R., and Beavis, R.C. (2003). A method for reducing the time required to match protein sequences with tandem mass spectra. Rapid Commun Mass Spectrom 17, 2310–2316.

    Article  CAS  Google Scholar 

  • De Leenheer, A.P., and Thienpont, L. M. (1992). Applications of isotope dilution-mass spectrometry in clinical chemistry, pharmacokinetics, and toxicology. Mass Spectrum Rev 11, 249–307.

    Article  Google Scholar 

  • DeSouza, L., Diehl, G., Rodrigues, M.J., Guo, J., Romaschin, A.D., Colgan, T.J., and Siu, K.W. (2005). Search for cancer markers from endometrial tissues using differentially labeled tags iTRAQ and cICAT with multidimensional liquid chromatography and tandem mass spectrometry. J Proteome Res 4, 377–386.

    Article  CAS  Google Scholar 

  • Deutsch, E.W., Lam, H., and Aebersold, R. (2008). Data analysis and bioinformatics tools for tandem mass spectrometry in proteomics. Physiol Genomics 33, 18–25.

    Article  CAS  Google Scholar 

  • Dowell, J.A., Frost, D.C., Zhang, J., and Li, L. (2008). Comparison of two-dimensional fractionation techniques for shotgun proteomics. Anal Chem 80, 6715–6723.

    Article  CAS  Google Scholar 

  • Eriksson, H., Lengqvist, J., Hedlund, J., Uhlen, K., Orre, L.M., Bjellqvist, B., Persson, B., Lehtio, J., and Jakobsson, P.J. (2008). Quantitative membrane proteomics applying narrow range peptide isoelectric focusing for studies of small cell lung cancer resistance mechanisms. Proteomics 8, 3008–3018.

    Article  CAS  Google Scholar 

  • Fenselau, C., and Yao, X. (2009). 18O2-labeling in quantitative proteomic strategies: A status report. J Proteome Res 8, 2140–2143.

    Article  CAS  Google Scholar 

  • Gatlin, C.L., Eng, J.K., Cross, S.T., Detter, J.C., and Yates, J.R., 3rd (2000). Automated identification of amino acid sequence variations in proteins by HPLC/microspray tandem mass spectrometry. Anal Chem 72, 757–763.

    Article  CAS  Google Scholar 

  • Geer, L.Y., Markey, S.P., Kowalak, J.A., Wagner, L., Xu, M., Maynard, D.M., Yang, X., Shi, W., and Bryant, S.H. (2004). Open mass spectrometry search algorithm. J Proteome Res 3, 958–964.

    Article  CAS  Google Scholar 

  • Gerber, S.A., Kettenbach, A.N., Rush, J., and Gygi, S.P. (2007). The absolute quantification strategy: Application to phosphorylation profiling of human separase serine 1126. Methods Mol Biol 359, 71–86.

    Article  CAS  Google Scholar 

  • Gerber, S.A., Rush, J., Stemman, O., Kirschner, M.W., and Gygi, S.P. (2003). Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci USA 100, 6940–6945.

    Article  CAS  Google Scholar 

  • Gevaert, K., Impens, F., Ghesquiere, B., Van Damme, P., Lambrechts, A., and Vandekerckhove, J. (2008). Stable isotopic labeling in proteomics. Proteomics 8, 4873–4885.

    Article  CAS  Google Scholar 

  • Grassl, J., Westbrook, J.A., Robinson, A., Boren, M., Dunn, M.J., and Clyne, R.K. (2009). Preserving the yeast proteome from sample degradation. Proteomics 9, 4616–4626.

    Article  CAS  Google Scholar 

  • Griffin, T.J., Xie, H., Bandhakavi, S., Popko, J., Mohan, A., Carlis, J.V., and Higgins, L. (2007). iTRAQ reagent-based quantitative proteomic analysis on a linear ion trap mass spectrometer. J Proteome Res 6, 4200–4209.

    Article  CAS  Google Scholar 

  • Gygi, S.P., Rist, B., Gerber, S.A., Turecek, F., Gelb, M.H., and Aebersold, R. (1999). Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17, 994–999.

    Article  CAS  Google Scholar 

  • Halligan, B.D., Slyper, R.Y., Twigger, S.N., Hicks, W., Olivier, M., and Greene, A.S. (2005). ZoomQuant: An application for the quantitation of stable isotope labeled peptides. J Am Soc Mass Spectrom 16, 302–306.

    Article  CAS  Google Scholar 

  • Holzmann, J., Pichler, P., Madalinski, M., Kurzbauer, R., and Mechtler, K. (2009). Stoichiometry determination of the MP1-p14 complex using a novel and cost-efficient method to produce an equimolar mixture of standard peptides. Anal Chem 81(24), 10254–10261.

    Google Scholar 

  • Hsu, J.L., Huang, S.Y., Chow, N.H., and Chen, S.H. (2003). Stable-isotope dimethyl labeling for quantitative proteomics. Anal Chem 75, 6843–6852.

    Article  CAS  Google Scholar 

  • Iliuk, A., Galan, J., and Tao, W.A. (2009). Playing tag with quantitative proteomics. Anal Bioanal Chem 393, 503–513.

    Article  CAS  Google Scholar 

  • Imami, K., Sugiyama, N., Tomita, M., and Ishihama, Y. (2010). Quantitative proteome and phosphoproteome analyses of cultured cells based on SILAC labeling without requirement of serum dialysis. Mol Biosyst 6, 594–602.

    Google Scholar 

  • Keller, A., Eng, J., Zhang, N., Li, X.J., and Aebersold, R. (2005). A uniform proteomics MS/MS analysis platform utilizing open XML file formats. Mol Syst Biol 1, 2005 0017.

    Article  Google Scholar 

  • Kerlavage, A., Bonazzi, V., di Tommaso, M., Lawrence, C., Li, P., Mayberry, F., Mural, R., Nodell, M., Yandell, M., Zhang, J., et al. (2002). The Celera discovery system. Nucleic Acids Res 30, 129–136.

    Article  CAS  Google Scholar 

  • Kruger, M., Moser, M., Ussar, S., Thievessen, I., Luber, C.A., Forner, F., Schmidt, S., Zanivan, S., Fassler, R., and Mann, M. (2008). SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell 134, 353–364.

    Article  Google Scholar 

  • Lane, A.N., Fan, T.W., Higashi, R.M., Tan, J., Bousamra, M., and Miller, D.M. (2009). Prospects for clinical cancer metabolomics using stable isotope tracers. Exp Mol Pathol 86, 165–173.

    Article  CAS  Google Scholar 

  • Leitner, A., and Lindner, W. (2009). Chemical tagging strategies for mass spectrometry-based phospho-proteomics. Methods Mol Biol 527, 229–243, x.

    Article  CAS  Google Scholar 

  • Lemeer, S., Jopling, C., Gouw, J., Mohammed, S., Heck, A.J., Slijper, M., and den Hertog, J. (2008). Comparative phosphoproteomics of zebrafish Fyn/Yes morpholino knockdown embryos. Mol Cell Proteomics 7, 2176–2187.

    Article  CAS  Google Scholar 

  • Li, X.J., Zhang, H., Ranish, J.A., and Aebersold, R. (2003). Automated statistical analysis of protein abundance ratios from data generated by stable-isotope dilution and tandem mass spectrometry. Anal Chem 75, 6648–6657.

    Article  CAS  Google Scholar 

  • Lin, W.T., Hung, W.N., Yian, Y.H., Wu, K.P., Han, C.L., Chen, Y.R., Chen, Y.J., Sung, T.Y., and Hsu, W.L. (2006). Multi-Q: A fully automated tool for multiplexed protein quantitation. J Proteome Res 5, 2328–2338.

    Article  CAS  Google Scholar 

  • Lopez-Otin, C., and Bond, J.S. (2008). Proteases: Multifunctional enzymes in life and disease. J Biol Chem 283, 30433–30437.

    Article  CAS  Google Scholar 

  • Mann, M. (2006). Functional and quantitative proteomics using SILAC. Nat Rev Mol Cell Biol 7, 952–958.

    Article  CAS  Google Scholar 

  • McNulty, D.E., and Annan, R.S. (2008). Hydrophilic interaction chromatography reduces the complexity of the phosphoproteome and improves global phosphopeptide isolation and detection. Mol Cell Proteomics 7, 971–980.

    Article  CAS  Google Scholar 

  • Mirgorodskaya, O.A., Kozmin, Y.P., Titov, M.I., Korner, R., Sonksen, C.P., and Roepstorff, P. (2000). Quantitation of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry using (18)O-labeled internal standards. Rapid Commun Mass Spectrom 14, 1226–1232.

    Article  CAS  Google Scholar 

  • Mortensen, P., Gouw, J.W., Olsen, J.V., Ong, S.E., Rigbolt, K.T., Bunkenborg, J., Cox, J., Foster, L.J., Heck, A.J., Blagoev, B., et al. (2009). MSQuant, an open source platform for mass spectrometry-based quantitative proteomics. J Proteome Res 9(1), 393–403.

    Google Scholar 

  • Mueller, L.N., Brusniak, M.Y., Mani, D.R., and Aebersold, R. (2008). An assessment of software solutions for the analysis of mass spectrometry based quantitative proteomics data. J Proteome Res 7, 51–61.

    Article  CAS  Google Scholar 

  • Nesvizhskii, A.I., Vitek, O., and Aebersold, R. (2007). Analysis and validation of proteomic data generated by tandem mass spectrometry. Nat Methods 4, 787–797.

    Article  CAS  Google Scholar 

  • Ong, S.E., Blagoev, B., Kratchmarova, I., Kristensen, D.B., Steen, H., Pandey, A., and Mann, M. (2002). Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1, 376–386.

    Article  CAS  Google Scholar 

  • Ong, S.E., Kratchmarova, I., and Mann, M. (2003). Properties of 13C-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC). J Proteome Res 2, 173–181.

    Article  CAS  Google Scholar 

  • Ong, S.E., and Mann, M. (2006). A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat Protoc 1, 2650–2660.

    Article  CAS  Google Scholar 

  • Orchard, S., Hoogland, C., Bairoch, A., Eisenacher, M., Kraus, H.J., and Binz, P.A. (2009). Managing the data explosion. A report on the HUPO-PSI Workshop. August 2008, Amsterdam, The Netherlands. Proteomics 9, 499–501.

    Article  CAS  Google Scholar 

  • Park, S.K., Venable, J.D., Xu, T., and Yates, J.R., 3rd (2008). A quantitative analysis software tool for mass spectrometry-based proteomics. Nat Methods 5, 319–322.

    CAS  Google Scholar 

  • Perkins, D.N., Pappin, D.J., Creasy, D.M., and Cottrell, J.S. (1999). Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567.

    Article  CAS  Google Scholar 

  • Pratt, J.M., Petty, J., Riba-Garcia, I., Robertson, D.H., Gaskell, S.J., Oliver, S.G., and Beynon, R.J. (2002a). Dynamics of protein turnover, a missing dimension in proteomics. Mol Cell Proteomics 1, 579–591.

    Article  CAS  Google Scholar 

  • Pratt, J.M., Robertson, D.H., Gaskell, S.J., Riba-Garcia, I., Hubbard, S.J., Sidhu, K., Oliver, S.G., Butler, P., Hayes, A., Petty, J., et al. (2002b). Stable isotope labelling in vivo as an aid to protein identification in peptide mass fingerprinting. Proteomics 2, 157–163.

    Article  CAS  Google Scholar 

  • Ramos-Fernandez, A., Lopez-Ferrer, D., and Vazquez, J. (2007). Improved method for differential expression proteomics using trypsin-catalyzed 18O labeling with a correction for labeling efficiency. Mol Cell Proteomics 6, 1274–1286.

    Article  CAS  Google Scholar 

  • Reynolds, K.J., Yao, X., and Fenselau, C. (2002). Proteolytic 18O labeling for comparative proteomics: Evaluation of endoprotease Glu-C as the catalytic agent. J Proteome Res 1, 27–33.

    Article  CAS  Google Scholar 

  • Rivers, J., Simpson, D.M., Robertson, D.H., Gaskell, S.J., and Beynon, R.J. (2007). Absolute multiplexed quantitative analysis of protein expression during muscle development using QconCAT. Mol Cell Proteomics 6, 1416–1427.

    Article  CAS  Google Scholar 

  • Ross, P.L., Huang, Y.N., Marchese, J.N., Williamson, B., Parker, K., Hattan, S., Khainovski, N., Pillai, S., Dey, S., Daniels, S., et al. (2004). Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3, 1154–1169.

    Article  CAS  Google Scholar 

  • Schmidt, A., Bisle, B., and Kislinger, T. (2009). Quantitative peptide and protein profiling by mass spectrometry. Methods Mol Biol 492, 21–38.

    Article  CAS  Google Scholar 

  • Schnolzer, M., Jedrzejewski, P., and Lehmann, W.D. (1996). Protease-catalyzed incorporation of 18O into peptide fragments and its application for protein sequencing by electrospray and matrix-assisted laser desorption/ionization mass spectrometry. Electrophoresis 17, 945–953.

    Article  CAS  Google Scholar 

  • Schulze, W.X., and Mann, M. (2004). A novel proteomic screen for peptide-protein interactions. J Biol Chem 279, 10756–10764.

    Article  CAS  Google Scholar 

  • Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., and Ideker, T. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res 13, 2498–2504.

    Article  CAS  Google Scholar 

  • Shilov, I.V., Seymour, S.L., Patel, A.A., Loboda, A., Tang, W.H., Keating, S.P., Hunter, C.L., Nuwaysir, L.M., and Schaeffer, D.A. (2007). The Paragon Algorithm, a next generation search engine that uses sequence temperature values and feature probabilities to identify peptides from tandem mass spectra. Mol Cell Proteomics 6, 1638–1655.

    Article  CAS  Google Scholar 

  • Shinkawa, T., Taoka, M., Yamauchi, Y., Ichimura, T., Kaji, H., Takahashi, N., and Isobe, T. (2005). STEM: A software tool for large-scale proteomic data analyses. J Proteome Res 4, 1826–1831.

    Article  CAS  Google Scholar 

  • Song, X., Bandow, J., Sherman, J., Baker, J.D., Brown, P.W., McDowell, M.T., and Molloy, M.P. (2008). iTRAQ experimental design for plasma biomarker discovery. J Proteome Res 7, 2952–2958.

    Article  CAS  Google Scholar 

  • Spellman, D.S., Deinhardt, K., Darie, C.C., Chao, M.V., and Neubert, T.A. (2008). Stable isotopic labeling by amino acids in cultured primary neurons: Application to brain-derived neurotrophic factor-dependent phosphotyrosine-associated signaling. Mol Cell Proteomics 7, 1067–1076.

    Article  CAS  Google Scholar 

  • Stewart, II, Thomson, T., and Figeys, D. (2001). 18O labeling: A tool for proteomics. Rapid Commun Mass Spectrom 15, 2456–2465.

    Article  CAS  Google Scholar 

  • Tang, W.H., Halpern, B.R., Shilov, I.V., Seymour, S.L., Keating, S.P., Loboda, A., Patel, A.A., Schaeffer, D.A., and Nuwaysir, L.M. (2005). Discovering known and unanticipated protein modifications using MS/MS database searching. Anal Chem 77, 3931–3946.

    Article  CAS  Google Scholar 

  • Thompson, A., Schafer, J., Kuhn, K., Kienle, S., Schwarz, J., Schmidt, G., Neumann, T., Johnstone, R., Mohammed, A.K., and Hamon, C. (2003). Tandem mass tags: A novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75, 1895–1904.

    Article  CAS  Google Scholar 

  • Villanueva, J., Nazarian, A., Lawlor, K., and Tempst, P. (2009). Monitoring peptidase activities in complex proteomes by MALDI-TOF mass spectrometry. Nat Protoc 4, 1167–1183.

    Article  CAS  Google Scholar 

  • Whiteaker, J.R., Zhao, L., Anderson, L., and Paulovich, A.G. (2009). An automated and multiplexed method for high throughput peptide immunoaffinity enrichment and multiple reaction monitoring mass spectrometry-based quantification of protein biomarkers. Mol Cell Proteomics 9(1), 184–196.

    Google Scholar 

  • Wiese, S., Reidegeld, K.A., Meyer, H.E., and Warscheid, B. (2007). Protein labeling by iTRAQ: A new tool for quantitative mass spectrometry in proteome research. Proteomics 7, 340–350.

    Article  CAS  Google Scholar 

  • Yan, W., and Chen, S.S. (2005). Mass spectrometry-based quantitative proteomic profiling. Brief Funct Genomic Proteomic 4, 27–38.

    Article  CAS  Google Scholar 

  • Yao, X., Afonso, C., and Fenselau, C. (2003). Dissection of proteolytic 18O labeling: Endoprotease-catalyzed 16O-to-18O exchange of truncated peptide substrates. J Proteome Res 2, 147–152.

    Article  CAS  Google Scholar 

  • Zeng, D., and Li, S. (2009). Improved CILAT reagents for quantitative proteomics. Bioorg Med Chem Lett 19, 2059–2061.

    Article  CAS  Google Scholar 

  • Zhang, G., Fenyo, D., and Neubert, T.A. (2009). Evaluation of the variation in sample preparation for comparative proteomics using stable isotope labeling by amino acids in cell culture. J Proteome Res 8, 1285–1292.

    Article  CAS  Google Scholar 

  • Zhang, R., Sioma, C.S., Thompson, R.A., Xiong, L., and Regnier, F.E. (2002). Controlling deuterium isotope effects in comparative proteomics. Anal Chem 74, 3662–3669.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith Ashman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ashman, K., Cañás, M.I.R., Luque-Garcia, J.L., Martínez, F.G. (2011). Stable Isotopic Labeling for Proteomics. In: Ivanov, A., Lazarev, A. (eds) Sample Preparation in Biological Mass Spectrometry. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0828-0_27

Download citation

Publish with us

Policies and ethics