Skip to main content

Why is the Baltic Sea so special to live in?

  • Chapter
  • First Online:
Biological Oceanography of the Baltic Sea

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Hamdani Z, Reker J (eds) (2007) Towards marine landscapes in the Baltic Sea. BALANCE Interim Report 10:1–116 [http://balance-eu.org/publications/index.html]

  • Alheit J, Möllmann J, Dutz J, Kornilovs G, Loewe P, Mohrholz V, Wasmund N (2005) Synchronous ecological regime shifts in the central Baltic and the North Sea in the late 1980s. ICES Journal of Marine Science 62:1205–1215

    Article  Google Scholar 

  • Andersen JH, Carstensen J, Conley DJ, Dromph K, Fleming V, et al. (2015) Long-term temporal and spatial trends in eutrophication status of the Baltic Sea. Biological Reviews [http://onlinelibrary.wiley.com/doi/10.1111/brv.12221/epdf]

  • Andrén E (1999) Holocene environmental changes recorded by diatom stratigraphy in the southern Baltic Sea. Meddelanden från Stockholms universitets institution för geologi och geokemi 302:1–22 [PhD Thesis]

    Google Scholar 

  • Andrén E, Andrén T, Kunzendorf H (2000) Holocene history of the Baltic Sea as a background for assessing records of human impact in the sediments of the Gotland basin. Holocene 10:687–702

    Article  Google Scholar 

  • Andrén T, Björck S, Andrén E, Conley DJ, Zillén L et al (2011) The development of the Baltic Sea basin during the last 130,000 years. In: Harff J, Björck S, Hoth P (eds) The Baltic Sea basin. Springer, Berlin, pp 75–97

    Chapter  Google Scholar 

  • Bakun A (2006) Wasp-waist populations and marine ecosystem dynamics: navigating the “predator pit” topographies. Progress in Oceanography 68:271–288

    Article  Google Scholar 

  • Beaugrand G, Conversi A, Chiba S, Edwards M, Fonda-Umani S et al (2015) Synchronous marine pelagic regime shifts in the Northern Hemisphere. Philosophical Transactions of the Royal Society B 370:20130272

    Article  Google Scholar 

  • Belkin IM (2009) Rapid warming of large marine ecosystems. Progress in Oceanography 81:207–213

    Article  Google Scholar 

  • Benson BB, Krause D Jr (1984) The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere. Limnology and Oceanography 29:620–632

    Article  CAS  Google Scholar 

  • Bernes C (2005) Change beneath the surface—an in-depth look at Sweden’s marine environment. Monitor 19:1–192. Swedish Environmental Protection Agency, Stockholm

    Google Scholar 

  • Bhend J, von Storch H (2009) Is greenhouse gas forcing a plausible explanation for the observed warming in the Baltic Sea catchment area? Boreal Environment Research 14:81–88

    CAS  Google Scholar 

  • Bianchi TS, Engelhaupt E, Westman P, Andrén T, Rolff C et al (2000) Cyanobacterial blooms in the Baltic Sea: natural or human-induced? Limnology and Oceanography 45:716–726

    Article  CAS  Google Scholar 

  • Björck S (1995) A review of the history of the Baltic Sea. 13.0–8.0 ka BP. Quaternary International 27:19–40

    Article  Google Scholar 

  • Björck S (2008) The late Quaternary development of the Baltic Sea. BACC Author Team. Assessment of climate change for the Baltic Sea basin. Regional Climate Studies, Springer, Berlin, pp 398–407

    Google Scholar 

  • Björck S, Andrén T, Jensen JB (2008) An attempt to resolve the partly conflicting data and ideas on the Ancylus-Littorina transition. Polish Geological Institute Special Papers 23:21–26

    Google Scholar 

  • Blomqvist S, Gunnars A, Elmgren R (2004) Why the limiting nutrient differs between temperate coastal seas and freshwater lakes: a matter of salt. Limnology and Oceanography 49:2236–2241

    Article  Google Scholar 

  • Boedeker D, Knapp HD (1995) Ökologie der Salzwiesen, Dünen und Schären. In: Rheinheimer G (ed) Meereskunde der Ostsee, 2nd edn Springer, Berlin, pp 222–229 [in German]

    Google Scholar 

  • Borgendahl J, Westman P (2007) Cyanobacteria as a trigger for increased primary productivity during sapropel formation in the Baltic Sea—a study of the Ancylus/Littorina transition. Journal of Paleolimnology 38:1–12

    Article  Google Scholar 

  • Brzezinski MA (1985) The Si-C-N ratio of marine diatoms—interspecific variability and the effect of some environmental variables. Journal of Phycology 21:347–357

    Article  CAS  Google Scholar 

  • Calow P (1973) The food of Ancylus fluviatilis (Müll.), a littoral stone-dwelling herbivore. Oecologia 13:113–133

    Article  CAS  Google Scholar 

  • Cameron A, Askew N (eds) (2011) EUSeaMap—preparatory action for development and assessment of a European broad-scale seabed habitat map: final report. Technical appendix No. 1: Light data and thresholds [http://jncc.gov.uk/euseamap]

  • Cardinale M, Svedäng H (2011) The beauty of simplicity in science: Baltic cod stock improves rapidly in a ‘cod hostile’ ecosystem state. Marine Ecology Progress Series 425:297–301

    Google Scholar 

  • Carstensen J, Andersen JH, Gustafsson BG, Conley DJ (2014) Deoxygenation of the Baltic Sea during the last century. Proceedings of the National Academy of Sciences of the USA 111:5628–5633

    Article  CAS  Google Scholar 

  • Casini M, Hjelm J, Molinero JC, Lövgren J, Cardinale M et al (2009) Trophic cascades promote threshold-like shifts in pelagic marine ecosystems. Proceedings of the National Academy of Sciences of the USA 106:197–202

    Article  CAS  Google Scholar 

  • Cederwall H, Elmgren R (1980) Biomass increase of benthic macrofauna demonstrates eutrophication of the Baltic Sea. Ophelia Supplement 1:287–304

    Google Scholar 

  • Cloern JE, Foster SQ, Kleckner AE (2014) Phytoplankton primary production in the world’s estuarine-coastal ecsystems. Biogeosciences 11:2477–2501

    Article  Google Scholar 

  • Conley DJ (2000) Biogeochemical nutrient cycles and nutrient management strategies. Hydrobiologia 410:87–96

    Article  Google Scholar 

  • Conley DJ, Björck S, Bonsdorff E, Carstensen J, Destouni G et al (2009) Hypoxia-related processes in the Baltic Sea. Environmental Science and Technology 43:3412–3420

    Article  CAS  Google Scholar 

  • Conley DJ, Carstensen J, Aigars J, Axe P, Bonsdorff E et al (2011) Hypoxia is increasing in the coastal zone of the Baltic Sea. Environmental Science and Technology 45:6777–6783

    Article  CAS  Google Scholar 

  • Cury P, Bakun A, Crawford RJM, Jarre A, Quinones RA, Shannon LJ et al (2000) Small pelagics in upwelling systems: patterns of interaction and structural changes in “wasp-waist” ecosystems. ICES Journal of Marine Science 57:603–618

    Article  Google Scholar 

  • Cyberski J, Wróblewski A (2000) Riverine water inflows and the Baltic Sea water volume 1901–1990. Hydrology and Earth System Sciences Discussions, European Geosciences Union 4:1–11

    Article  Google Scholar 

  • De Geer G (1912) A geochronology of the last 12,000 years. XIth International Geological Congress, Stockholm 1:241–253

    Google Scholar 

  • De Geer G (1932) Stockholmstraktens kvartärgeologi: beskrivning till kvartärgeologisk karta över Stockholmstrakten. Sveriges geologiska undersökning, Serie Ba, 89 pp [in Swedish]

    Google Scholar 

  • Del Amo Y, Brzezinski MA (2000) The chemical form of dissolved Si taken up by marine diatoms. Journal of Phycology 35:1162–1170

    Article  Google Scholar 

  • Deutsch C, Weber T (2012) Nutrient ratios as a tracer and driver of ocean biogeochemistry. Annual Review of Marine Science 4:113–141

    Article  Google Scholar 

  • Diaz RJ, Rosenberg R (1995) Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanography and Marine Biology 33:245–303

    Google Scholar 

  • Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321:926–929

    Article  CAS  Google Scholar 

  • Diekmann R, Möllmann C (eds) (2010) Integrated ecosystem assessments of seven Baltic Sea areas covering the last three decades. ICES Cooperative Research Report 302:1–90

    Google Scholar 

  • Du Rietz GE (1930) Algbälten och vattenståndsväxlingar vid svenska östersjökusten. Botaniska Notiser 1930:421–432 [in Swedish]

    Google Scholar 

  • Ekman M (1996) A consistent map of the postglacial uplift of Fennoscandia. Terra Nova 8:158–165

    Article  Google Scholar 

  • Elliott M, McLusky DS (2002) The need for definitions in understanding estuaries. Estuarine, Coastal and Shelf Science 55:815–827

    Article  Google Scholar 

  • Elmgren R, Blenckner T, Andersson A (2015) Baltic Sea management: successes and failures. AMBIO 44 (Supplement):S335–S344

    Article  Google Scholar 

  • Fairbanks RG (1989) A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the younger Dryas event and deep-ocean circulation. Nature 342:637–642

    Article  Google Scholar 

  • Feistel R, Nausch G, Hagen E (2006) Unusual Baltic inflow activity in 2002–2003 and varying deep-water properties. Oceanologia 48:21–35

    Google Scholar 

  • Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240

    Article  CAS  Google Scholar 

  • Finni T, Kononen K, Olsonen R, Wallström K (2001) The history of cyanobacterial blooms in the Baltic Sea. AMBIO 30:168–172

    Article  Google Scholar 

  • Fisher H, Matthäus W (1996) The importance of the Drogden sill in the sound for major Baltic inflows. Journal of Marine Systems 9:137-157

    Google Scholar 

  • Fonselius S (1995) Västerhavets och Östersjöns Oceanografi. Swedish Meteorological and Hydrological Institute (SMHI), Norrköping, 200 pp [in Swedish]

    Google Scholar 

  • Fredén C (ed) (1994) Berg och jord. Sveriges Nationalatlas. SNA Förlag, Stockholm, 208 pp [in Swedish]

    Google Scholar 

  • Granéli E, Wallström K, Larsson U, Granéli W, Elmgren R (1990) Nutrient limitation of primary production in the Baltic Sea Area. AMBIO 19:142–151

    Google Scholar 

  • Gräwe U, Naumann M, Mohrholz V, Burchard H (2015) Anatomizing one of the largest saltwater inflows into the Baltic Sea in December 2014. Journal of Geophysical Research 120:7676–7697

    Google Scholar 

  • Guildford SJ, Hecky RE (2000) Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: is there a common relationship? Limnology and Oceanography 45:1213–1223

    Article  CAS  Google Scholar 

  • Gustafsson BG, Schenk F, Blenckner T, Eilola K, Meier HEM et al (2012) Reconstructing the development of Baltic Sea eutrophication 1850–2006. AMBIO 41:534–548

    Article  CAS  Google Scholar 

  • Gustafsson BG, Westman P (2002) On the causes for salinity variations in the Baltic Sea for the last 8500 years. Paleoceanography 17:1–14

    Article  CAS  Google Scholar 

  • Gustafsson E, Omstedt A, Gustafsson BG (2015) The air-water CO2 exchange of a coastal sea—a sensitivity study on factors that influence the absorption and outgassing of CO2 in the Baltic Sea. Journal of Geophysics Research, Oceans 120:5342–5357

    Article  Google Scholar 

  • Hagström Å, Azam F, Kuparinen J, Zweifel UL (2001) Pelagic plankton growth and resource limitations in the Baltic Sea. In: Wulff FV, Rahm L, Larsson P (eds) A systems analysis of the Baltic Sea. Springer, Berlin, Ecological Studies 148:177–210

    Google Scholar 

  • Hannerz F, Destouni G (2006) Spatial characterization of the Baltic Sea drainage basin and its unmonitored catchments. AMBIO 35:214–219

    Article  Google Scholar 

  • Hansen HP, Koroleff F (1999) Determination of nutrients. In: Grasshoff K, Kremling K, Erhardt M (eds) Methods of seawater analysis, 3rd edn Wiley-VCH Verlag, Weinheim, pp 159–228

    Chapter  Google Scholar 

  • Hansson D, Eriksson C, Omstedt A, Chen D (2011a) Reconstruction of river runoff to the Baltic Sea, AD 1500–1995. International Journal of Climatology 31:696–703

    Article  Google Scholar 

  • Hansson M, Andersson L, Axe P (2011b) Areal extent and volume of anoxia and hypoxia in the Baltic Sea, 1960–2011. Report Oceanography 42:1–63. Swedish Meteorological and Hydrological Institute, Norrköping

    Google Scholar 

  • Hardin G (1968) The tragedy of the commons. Science 162:1243–1248

    Article  CAS  Google Scholar 

  • Hayes MO (1979) Barrier island morphology as a function of tidal and wave regime. In: Leatherman SP (ed) Barrier islands. Academic Press, New York NY, pp 1–28

    Google Scholar 

  • Hecky RE, Campbell P, Hendzel LL (1993) The stoichiometry of carbon, nitrogen and phosphorus in particulate matter of lakes and oceans. Limnology and Oceanography 38:709–724

    Article  CAS  Google Scholar 

  • Hecky RE, Kilham P (1988) Nutrient limitation of phytoplankton in freshwater and marine environments: a review of recent evidence on the effects of enrichment. Limnology and Oceanography 33:796–822

    CAS  Google Scholar 

  • HELCOM (1993) Convention of the protection of the marine environment of the Baltic Sea Area, 1974 (Helsinki Convention), with amendments to its Annexes adopted by the Helsinki Commission in 1983, 1987, 1989, 1990, 1992 and 1993. Printed by HELCOM, Helsinki, 27 pp

    Google Scholar 

  • HELCOM (1996) Water balance of the Baltic Sea—a regional cooperation project of the Baltic Sea states international summary report. Baltic Sea Environment Proceedings 16:1–174

    Google Scholar 

  • HELCOM (2010a) Hazardous substances in the Baltic Sea—an integrated thematic assessment of hazardous substances in the Baltic Sea. Baltic Sea Environment Proceedings 120B:1–116

    Google Scholar 

  • HELCOM (2010b) Maritime activities in the Baltic Sea—an integrated thematic assessment on maritime activities and response to pollution at sea in the Baltic Sea region. Baltic Sea Environment Proceedings 123:1–64

    Google Scholar 

  • HELCOM (2012) Checklist of Baltic Sea macro-species. Baltic Sea Environment Proceedings 130:1–203

    Google Scholar 

  • Holte B, Guliksen B (1998) Common macrofaunal dominant species in the sediments of some north Norwegian and Svalbard glacial fjords. Polar Biology 19:375–382

    Article  Google Scholar 

  • Humborg C, Smedberg E, Rodriguez-Medina M, Mörth CM (2007) Changes in dissolved silicate loads to the Baltic Sea—the effects of lakes and reservoirs. Journal of Marine Systems 73:223–235

    Article  Google Scholar 

  • Jakobsen F, Trébuchet C (2000) Observations of the transport through the Belt Sea and an investigation of the momentum balance. Continental Shelf Research 20:293–311

    Article  Google Scholar 

  • Jöns (2011) Settlement development in the shadow of coastal changes—case studies from the Baltic rim. In: Harff J, Björck S, Hoth P (eds) The Baltic Sea basin. Springer, Berlin, pp 301–336

    Chapter  Google Scholar 

  • Kirk JTO (2011) Light and photosynthesis in aquatic ecosystems, 3rd edn Cambridge University Press, Cambridge 662 pp

    Google Scholar 

  • Kraberg AC, Wasmund N, Vanaverbeke J, Schiedel D, Wiltshire KH, Mieszkowska (2011) Regime shifts in the marine environment: the scientific basis and political context. Marine Pollution Bulletin 62:7–20

    Article  CAS  Google Scholar 

  • Krumbein WC (1934) Size frequency distributions of sediments. Journal of Sedimentary Petrology 4:65–77

    Article  Google Scholar 

  • Kuparinen J, Leonardsson K, Mattila J, Wikner J (1994) Food web structure, carbon flow and trends in the Gulf of Bothnia, Baltic Sea. Vatten 50:201–219

    Google Scholar 

  • Lampe R (1995) Küstentypen. In: Rheinheimer G (ed) Meereskunde der Ostsee, 2nd edn Springer, Berlin, pp 17–25 [in German]

    Google Scholar 

  • Lass HU, Matthäus W (1996) On temporal wind variations forcing salt water inflows into the Baltic Sea. Tellus A 48:663–671

    Article  Google Scholar 

  • Lass HU, Matthäus W (2008) General oceanography of the Baltic Sea. In: Feistel R, Nausch G, Wasmund (eds) State and evolution of the Baltic Sea, 1952–2005—a detailed 50-year survey of meteorology and climate, physics, chemistry, biology, and marine environment. John Wiley and Sons, Hoboken, NJ, pp 5–43

    Google Scholar 

  • Lauckner G (1984) Brackish-water submergence of the common periwinkle, Littorina littorea, and its digenean parasites in the Baltic Sea and in the Kattegat. Helgoländer Meeresuntersuchungen 37:177–184

    Article  Google Scholar 

  • Launiainen J, Vihma T (1990) Derivation of turbulent surface fluxes—an iterative flux-profile method allowing arbitrary observing heights. Environmental Software 5:113–124

    Google Scholar 

  • Lehmann A, Myrberg K (2008) Upwelling in the Baltic Sea. Journal of Marine Systems 74:S3–S12

    Article  Google Scholar 

  • Lehmann A, Post P (2015) Variability of atmospheric circulation patterns associated with large volume changes of the Baltic Sea. Advances in Science and Research 12:219–225

    Article  Google Scholar 

  • Lehtiniemi M, Lehmann A, Javidpour J, Myrberg K (2012) Spreading and physico-biological reproduction limitations of the invasive American comb jelly Mnemiopsis leidyi in the Baltic Sea. Biological Invasions 14:341–354

    Article  Google Scholar 

  • Lehtoranta J, Ekholm P, Pitkänen H (2008) Eutrophication-driven sediment microbial processes can explain the regional variation in phosphorus concentrations between Baltic Sea subbasins. Journal of Marine Systems 74:495–504

    Article  Google Scholar 

  • Lemke W, Kuijpers A, Hoffmann G, Milkert D, Atzler R (1994) The Darß sill, hydrographic threshold in the southwestern Baltic: Late Quaternary geology and recent sediment dynamics. Continental Shelf Research 14:847–870

    Article  Google Scholar 

  • Leppäranta M, Myrberg K (2009) Physical oceanography of the Baltic Sea. Springer, Berlin 378 pp

    Book  Google Scholar 

  • Levinton JS (2010) Marine biology: function, biodiversity, ecology, 3rd edn Oxford University Press, Oxford 588 pp

    Google Scholar 

  • Lindström G (1886) Om postglaciala sänkningar af Gotland. Geologiska Föreningens i Stockholm Förhandlingar 102 VIII:251–281 [in Swedish]

    Google Scholar 

  • Linnaeus, C. (1747) Wästgöta-resa, på riksens högloflige ständers befallning förrättad år 1746. Med anmärkningar uti oeconomien, naturkunnogheten, antiquiteter, invånarnes seder och lefnads-sätt. Lars Salvius, Stockholm [in Swedish]

    Google Scholar 

  • Matthäus W (2006) The history of investigation of salt water inflows into the Baltic Sea: from the early beginning to recent results. Baltic Sea Research Institute Warnemünde. Germany. Marine Science Reports 65:1–74

    Google Scholar 

  • Matthäus W, Nehring D, Feistel R, Nausch G, Mohrholz V, Lass HU (2008) The inflow of highly saline water into the Baltic Sea. In: Feistel R, Nausch G, Wasmund (eds) State and evolution of the Baltic Sea, 1952–2005—a detailed 50-year survey of meteorology and climate, physics, chemistry, biology, and marine environment. John Wiley and Sons, Hoboken, NJ, pp 265–309

    Google Scholar 

  • Matthäus W, Schinke H (1999) The influence of river runoff on deep water conditions of the Baltic Sea. Hydrobiologia 393:1–10

    Article  Google Scholar 

  • Mattsson J (1996) Some comments on the barotropic flow through the Danish straits and the division of the flow between the Belt Sea and the Öresund. Tellus A 48:456–464

    Article  Google Scholar 

  • McLusky DS, Elliott M (2007) Transitional waters: a new approach, semantics or just muddying the waters? Estuarine, Coastal and Shelf Science 71:359–363

    Article  Google Scholar 

  • Meier HEM (2007) Modeling the pathways and ages of inflowing salt- and freshwater in the Baltic Sea. Estuarine, Coastal and Shelf Science 74:610–627

    Article  Google Scholar 

  • Meier HEM, Feistel R, Piechura J, Arneborg L, Burchard H et al (2006) Ventilation of the Baltic Sea deep water: a brief review of present knowledge from observations to models. Oceanologia 48:133–164

    Google Scholar 

  • Meier HEM, Kauker F (2003) Modeling decadal variability of the Baltic Sea: 2. Role of freshwater inflow and large-scale atmospheric circulation for salinity. Journal of Geophysical Research 108(C11):3368

    Article  Google Scholar 

  • Meier HEM, Müller-Karulis B, Andersson HC, Dieterich C, Eilola K et al (2012) Impact of climate change on ecological quality indicators and biogeochemical fluxes in the Baltic Sea: a multi-model ensemble study. AMBIO 41:558–573

    Article  Google Scholar 

  • Miettinen A (2002) Relative sea level changes in the eastern part of the Gulf of Finland during the last 8,000 years. Annales Academiae Scientarum Fennicae Geologica-Geographica 162:1–102

    Google Scholar 

  • Mohrholz V, Naumann M, Nausch G, Krüger S, Gräwe U (2015) Fresh oxygen for the Baltic Sea—an exceptional saline inflow after a decade of stagnation. Journal of Marine Systems 148:152–166

    Article  Google Scholar 

  • Möllmann C, Diekmann R (2012) Marine ecosystem regime shifts induced by climate and overfishing: a review for the northern hemisphere. Advances in Ecological Research 47:303–347

    Article  Google Scholar 

  • Möllmann C, Diekmann R, Müller-Karulis B, Kornilovs G, Plikshs M, Axe P (2009) Reorganization of a large marine ecosystem due to atmospheric and anthropogenic pressure: a discontinuous regime shift in the central Baltic Sea. Global Change Biology 15:1377–1393

    Article  Google Scholar 

  • Murray JW, Jannasch HW, Honjo S, Anderson RF, Reeburgh WS et al (1989) Unexpected changes in the oxic/anoxic interface in the Black Sea. Nature 338:411–413

    Article  CAS  Google Scholar 

  • Myrberg K, Andrejev O (2003) Main upwelling regions in the Baltic Sea—a statistical analysis based on three-dimensional modelling. Boreal Environment Research 8:97–112

    Google Scholar 

  • Niiranen S, Yletyinen J, Tomczak MT, Blenckner T, Hjerne O et al (2013) Combined effects of global climate change and regional ecosystem drivers on an exploited marine food web. Global Change Biology 19:3327–3342

    Google Scholar 

  • Nixon SW (1995) Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia 41:199–219

    Article  Google Scholar 

  • Nixon SW, Buckley BA (2002) “A strikingly rich zone”—nutrient enrichment and secondary production in coastal marine ecosystems. Estuaries 25:782–796

    Article  Google Scholar 

  • Novotny K, Liebsch G, Lehmann A, Dietrich R (2006) Variability of sea surface heights in the Baltic Sea: an intercomparison of observations and model simulations. Marine Geodesy 29:113–134

    Article  Google Scholar 

  • Omstedt A (2015) Guide to process-based modelling of lakes and coastal seas, 2nd edn Springer-Praxis books in Geophysical Sciences, Springer, Berlin 273 pp

    Book  Google Scholar 

  • Omstedt A, Axell LB (2003) Modeling the variations of salinity and temperature in the large gulfs of the Baltic Sea. Continental Shelf Research 23:265–294

    Article  Google Scholar 

  • Omstedt A, Meuller L, Nyber L (1997) Interannual, seasonal and regional variations of precipitation and evaporation over the Baltic Sea. AMBIO 26:484–492

    Google Scholar 

  • OSPAR (1998) OSPAR Agreement 1998–18, Annex 1. OSPAR strategy to combat eutrophication. [http://www.bmu.de/files/pdfs/allgemein/application/pdf/ospar_strategy3_eut.pdf]

  • Österblom H, Hansson S, Larsson U, Hjerne O, Wulff F et al (2007) Human-induced trophic cascades and ecological regime shifts in the Baltic Sea. Ecosystems 10:877–889

    Article  CAS  Google Scholar 

  • Piechura J, Beszczyńska-Möller A (2004) Inflow waters in the deep regions of the southern Baltic Sea—transport and transformations (corrected version). Oceanologia 46:113–141

    Google Scholar 

  • Pirazzoli PA (1991) World Atlas of Holocene sea level changes. Elsevier, 291 pp

    Google Scholar 

  • Poulícková A, Jahn R (2007) Campylodiscus clypeus (Ehrenberg) Ehrenberg ex Kützing: typification, morphology and distribution. Diatom Research 22:135–146

    Article  Google Scholar 

  • Rabalais NN, Díaz RJ, Levin LA, Turber RE, Gilbert D et al (2010) Dynamics and distribution of natural human-caused hypoxia. Biogeosciences 7:585–619

    Article  CAS  Google Scholar 

  • Redfield AC (1934) On the proportions of organic derivatives in seawater and their relation to the composition of plankton. In: James Johnstone Memorial Volume. University of Liverpool, pp 176–192

    Google Scholar 

  • Redfield AC (1958) The biological control of chemical factors in the environment. American Scientist 46(205–221):230A

    Google Scholar 

  • Redfield AC, Ketchum BH, Richards FA (1963) The influence of organisms on the composition of seawater. In: Hill MN (ed) The sea. Wiley-Liss, New York NY, pp 26–77

    Google Scholar 

  • Reid PC, Hari RA, Beaugrand G, Livingstone DM, Marty C et al (2016) Global impacts of the 1980s regime shift. Global Change Biology 22:682–703

    Article  Google Scholar 

  • Remane A (1934) Die Brackwasserfauna. Verhandlungen der Deutschen Zoologischen Gesellschaft 36:34–74 [in German]

    Google Scholar 

  • Rutgersson A, Jaagus Schenk JF, Stendel M (2014) Observed changes and variability of atmospheric parameters in the Baltic Sea region during the last 200 years. Climate Research 61:177–190

    Article  Google Scholar 

  • Savchuk OP, Eilola K, Gustafsson BG, Rodríguez Medina M, Ruoho-Airola T (2012a) Long-term reconstruction of nutrient loads to the Baltic Sea, 1850–2006. Baltic Nest Institute Technical Report Series 6:1–9

    Google Scholar 

  • Savchuk OP, Gustafsson BG, Rodríguez Medina M, Sokolov AV, Wulff F (2012b) External nutrient loads to the Baltic Sea, 1970–2006. Baltic Nest Institute Technical Report Series 5:1–19

    Google Scholar 

  • Savchuk OP, Wulff F, Hille S, Humborg C, Pollehne F (2008) The Baltic Sea a century ago—a reconstruction from model simulations, verified by observations. Journal of Marine Systems 74:485–494

    Article  Google Scholar 

  • Schmelzer N, Seinä A, Lundquist JA, Sztobryn M (2008) Ice. In: Feistel R, Nausch G, Wasmund N (eds) State and evolution of the Baltic Sea 1952–2005—a detailed 50-year survey of meteorology and climate, physics, chemistry, biology, and marine environment. John Wiley and Sons, Hoboken, NJ, pp 199–240

    Chapter  Google Scholar 

  • Schönfeld J, Numberger L (2007) Seasonal dynamics and decadal changes of benthic foraminiferal assemblages in the western Baltic Sea (NW Europe). Journal of Micropalaeontology 26:47–60

    Article  Google Scholar 

  • Schoning K (2001) The brackish Baltic Sea Yoldia Stage—palaeoenvironmental implications from marine benthic fauna and stable oxygen isotopes. Boreas 30:290–298

    Article  Google Scholar 

  • Schoning K, Wastegård S (1999) Ostracod assemblages in late Quaternary varved glaciomarine clay of the Baltic Sea Yoldia stage in eastern middle Sweden. Marine Micropaleontology 37:313–325

    Article  Google Scholar 

  • Seppä H, Bjune AE, Telford RJ, Birks HJB, Veski S (2009) Last nine-thousand years of temperature variability in Northern Europe. Climate of the Past 5:523–535

    Article  Google Scholar 

  • Siegel H, Gerth M, Tschersich G (2008) Satellite-derived sea surface temperature for the period 1990–2005. In: Feistel R, Nausch G, Wasmund N (eds) State and evolution of the Baltic Sea 1952–2005: a detailed 50-year survey of meteorology and climate, physics, chemistry, biology, and marine environment. John Wiley and Sons, Hoboken, NJ, pp 241–265

    Chapter  Google Scholar 

  • Sjöberg B (ed) (1992) Hav och kust. Sveriges Nationalatlas. SNA Förlag, Stockholm, 127 pp [in Swedish]

    Google Scholar 

  • Soesoo A, Miidel A (2007) North Estonian Klint. MTÜ GEOGuide Baltoscandia. Tallinn, 2007, 29 pp

    Google Scholar 

  • Sohlenius G, Emeis KC, Andrén E, Andrén T, Kohly A (2001) Development of anoxia during the fresh-brackish water transition in the Baltic Sea. Marine Geology 177:221–242

    Article  CAS  Google Scholar 

  • Stedmon CA, Osburn CL, Kragh T (2010) Tracing water mass mixing in the Baltic—North Sea transition zone using the optical properties of coloured dissolved organic matter. Estuarine, Coastal and Shelf Science 87:156–162

    Article  CAS  Google Scholar 

  • Strasser M (1999) Mya arenaria—an ancient invader of the North Sea coast. Helgoländer Meeresuntersuchungen 52:309–324

    Article  Google Scholar 

  • Svendsen JI, Alexandersson H, Astakhov VI, Demidov I, Dowdeswell JA et al (2004) Late Quaternary ice sheet history of northern Eurasia. Quaternary Science Reviews 23:1229–1271

    Article  Google Scholar 

  • Thamatrakoln K, Hildebrand M (2008) Silicon uptake in diatoms revisited: a model for saturable and nonsaturable uptake kinetics and the role of silicon transporters. Plant Physiology 146:1397–1407

    Article  CAS  Google Scholar 

  • Thrush SF, Dayton PK (2010) What can ecology contribute to ecosystem-based management? Annual Review in Marine Science 2:419–441

    Article  Google Scholar 

  • Thurow F (1997) Estimation of the total fish biomass in the Baltic Sea during the 20th century. ICES Journal of Marine Science 54:444–461

    Article  Google Scholar 

  • Vähätalo AV, Järvinen M (2007) Photochemically produced bioavailable nitrogen from biologically recalcitrant dissolved organic matter stimulates production of a nitrogen-limited microbial food web in the Baltic Sea. Limnology and Oceanography 52:132–143

    Article  Google Scholar 

  • Vaquer-Sunyer R, Duarte CM (2008) Thresholds of hypoxia for marine biodiversity. Proceedings of the National Academy of Sciences of the USA 105:15452–15457

    Article  CAS  Google Scholar 

  • Wærn M (1952) Rocky-shore algae in the Öregrund archipelago. Acta Phytogeographica Suecica 30:1–298

    Google Scholar 

  • Watson DC, Norton TA (1985) Dietary preferences of the common periwinkle, Littorina littorea (L.). Journal of Experimental Marine Biology and Ecology 88:121–193

    Article  Google Scholar 

  • Wentworth CK (1922) A scale of grade and class terms for clastic sediments. The Journal of Geology 30:377–392

    Article  Google Scholar 

  • Widerlund A, Andersson PS (2006) Strontium isotopic composition of modern and Holocene mollusc shells as a palaeosalinity indicator for the Baltic Sea. Chemical Geology 232:54–66

    Article  CAS  Google Scholar 

  • Winterhalter B (1992) Late-Quaternary stratigraphy of Baltic Sea basins—a review. Bulletin of the Geological Society of Finland 64:189–194

    Google Scholar 

  • Wulff F, Sokolov A, Savchuk (2013) Nest—a decision support system for management of the Baltic Sea, a user manual. Baltic Nest Institute, Stockholm University Baltic Sea Centre, Technical Report 10:1–70

    Google Scholar 

  • Wulff F, Stigebrandt A, Rahm L (1990) Nutrient dynamics of the Baltic Sea. AMBIO 19:126–133

    Google Scholar 

  • Zillén L, Conley DJ, Andrén T, Andrén E, Björck S (2008) Past occurrences of hypoxia in the Baltic Sea and the role of climate variability, environmental change and human impact. Earth-Science Review 91:77–92

    Article  Google Scholar 

  • Zorita E, Laine A (2000) Dependence of salinity and oxygen concentrations in the Baltic Sea on large-scale atmospheric circulation. Climate Research 14:25–41

    Article  Google Scholar 

  • Zweifel UL, Wilmer J, Hagström A, Lundberg E, Norrman B (1995) Dynamics of in a coastal ecosystem. Limnology and Oceanography 40:299–305

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pauline Snoeijs-Leijonmalm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Snoeijs-Leijonmalm, P., Andrén, E. (2017). Why is the Baltic Sea so special to live in?. In: Snoeijs-Leijonmalm, P., Schubert, H., Radziejewska, T. (eds) Biological Oceanography of the Baltic Sea. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0668-2_2

Download citation

Publish with us

Policies and ethics