Skip to main content

Brassinosteroid action and its relation with heat stress mechanisms in plants

  • Chapter
  • First Online:
Brassinosteroids: A Class of Plant Hormone

Abstract

Brassinosteroids (BRs) are plant steroid hormones which can regulate several physiological effects in plants, including promotion of cell growth and induction of heat stress tolerance. BR-biosynthesis and signaling mutants show a striking dwarf phenotype and these mutants may therefore lead to intrinsic cellular stress. However, how stress mechanisms could function during BR action is poorly understood. This review will focus on stress gene/protein and metabolites that have showed to be altered during BR-induced heat tolerance and as a result of changed BR content and perception. Recent studies on proteomics and microarray of BR-treated tissues or BR-related mutants have revealed up/down regulation of specific enzymes/genes related to reactive oxygen scavenging, redox control, protein folding, and others. We will specifically discuss potential roles for Heat Shock Proteins, Antioxidant metabolites and enzymes in BRinduced thermal tolerance. In addition, as stress mechanisms are not exclusive of plants under stressful situations, the review will also discuss on how these protective factors may be implicated in classical BR effects during normal growth stimulation. Putative models to explain the role of Antioxidants, Oxidants and Heat Shock Proteins in BR action will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Anderson, J. A. 2002. Catalase activity, hydrogen peroxide content and thermotolerance of pepper leaves. Sci. Hort., 95(4): 277–284.

    Article  CAS  Google Scholar 

  • Apel, K., and Hirt, H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Ann. Review Plant Biol., 55: 373–399.

    Article  CAS  Google Scholar 

  • Bajguz, A. 2009. Brassinosteroid enhanced the level of abscisic acid in Chlorella vulgaris subjected to short-term heat stress. J. Plant Physiol.,166(8): 882–886.

    Article  CAS  PubMed  Google Scholar 

  • Bajguz, A., and Hayat, S. 2009. Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol. Biochem. 47(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  • Cao, S., Xu, Q., Cao, Y., Qian, K., An, K., Zhu, Y., Binzen, H., Zhao, and Kuai, B. 2005. Loss-of-function mutations in DET2 gene lead to an enhanced resistance to oxidative stress in Arabidopsis. Physiol. Plant., 123: 57–64.

    Article  CAS  Google Scholar 

  • Clouse, S.D., and Sasse, J.M. 1998. Brassinosteroids: Essential Regulators of Plant Growth and Development. Ann. Rev. Plant. Physiol. Plant Mol. Biol., 49: 427–451.

    Article  CAS  Google Scholar 

  • Confraria, A., Desikan, R., Santos, I., Neill, S. 2007. Brassinosteroids protect plants against heat stress. Comparative Biochem. Physiol., 146(4): S279

    Article  Google Scholar 

  • Dane, F., Hunter, A.G., and Chambliss, O.L. 1991. Fruit set, pollen fertility, and combining ability of selected tomato genotypes under high temperature field conditions. J. Amer. Hort. Sci., 116: 906–910.

    Google Scholar 

  • Deng, Z., Zhang, X., Tang, W., Oses-Prieto, J. A., Suzuki, N., Gendron, J. M., Chen, H., Guan, S., Chalkley, R. J., Peterman, T. K., Burlingame, A. L., and Wang, Z. Y. 2007. A Proteomic Study of Brassinosteroid Response in Arabidopsis. Mol. Cell. Proteomics., 11: 451–467.

    Google Scholar 

  • Dhaubhadel, S., Browning, K.S., Gallie, D.R., Krishna P., 2002. Brassinosteroid functions to protect the translational machinery and heat-shock protein synthesis following thermal stress. Plant J., 29(6): 681–691.

    Article  CAS  PubMed  Google Scholar 

  • Dhaubhadel, S., Chaudhary, S., Dobinson, K., and Krishna, P. 1999. Treatment with 24-epibrassinolide, a brassinosteroid increases the basic thermotolerance of Brassica napus and tomato seedlings. Plant Mol. Biol., 40: 333–342.

    Article  CAS  PubMed  Google Scholar 

  • Foyer, C.H., and Noctor, G. 2005. Redox Homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses. Plant Cell., 17:1866–1875.

    Article  CAS  PubMed  Google Scholar 

  • Friedrich, K.L., Giese, K.C., Buan, N.R., and Vierling, E. 2004. Interactions between small heat shock protein subunits and substrate in small heat shock protein–substrate complexes. J. Biol. Chem., 279: 1080–1089.

    Article  CAS  PubMed  Google Scholar 

  • Goda, H., Sawa, S., Asami, T., Fujioka, S., Shimada, Y., and Yoshida, S. 2004. Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes in Arabidopsis. Plant Physiol., 134:1555–1573.

    Article  CAS  PubMed  Google Scholar 

  • Goda, H., Shimada, Y., Asami, T., Fujioka, S., and Yoshida, S. 2002. Microarray analysis of brassinosteroid-regulated genes in Arabidopsis. Plant Physiol., 130:1319–1334.

    Article  CAS  PubMed  Google Scholar 

  • Hong, S.W., Lee, U., Vierling, E., 2003. Arabidopsis hot Mutants Define Multiple Functions Required for Acclimation to High Temperatures. Plant Physiol., 132:757–767.

    Article  CAS  PubMed  Google Scholar 

  • Huang, B., Chu, C-H., Chen, S-L., Juan, H-F., and Chen, Y-M. 2006. A proteomics study of the mung bean epicotyl regulated by brassinosteroids under conditions of chilling stress. Cell. Mol. Biol. Letters, 11: 264–278.

    Article  CAS  Google Scholar 

  • Kagale, S., Divi, U.K., Krochko, J.E., Séller, W.A., and Krishna, P. 2007. Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta., 225: 353–364.

    Article  CAS  PubMed  Google Scholar 

  • Khripach, V., Zhabinskii, V., and De Groot, A. 1999. Brassinosteroids. A new Class of Plant Hormones. Academic Press. New York. 456p.

    Google Scholar 

  • Koh, S., Lee, S. Ch., Kim, M. K., Koh, J. H., Lee, S., An, G., Choe, S., and Kim, S. R. 2007. T-DNA tagged knockout mutation of rice OsGSK1, an orthologue of Arabidopsis BIN2, with enhanced tolerance to various abiotic stress. Plant Mol. Biol., 65: 453–466.

    Article  CAS  PubMed  Google Scholar 

  • Konishi, H., and Komatsu, S. 2003. A proteomics approach to investigating promotive effects of brassinolide on lamina inclination and root growth in rice seedlings. Biol. Pharm. Bull., 26:401–408.

    Article  CAS  PubMed  Google Scholar 

  • Kotak, S., Larkindale, J., Lee, U., Koskull-Doring, P.V., Vierling, E., and Scharf, K.D. 2007. Complexity of the heat stress response in plants. Curr. Opin. Plant Biol., 10: 310–316.

    Article  CAS  PubMed  Google Scholar 

  • Krishna, P. 2003. Brassinosteroid-Mediated Stress Responses. J. Plant Growth Regul., 22(4): 289–297.

    Article  CAS  PubMed  Google Scholar 

  • Kulaeva, O.N., Burkhanova, E.A., Fedina, A.B., Kaokhlova, V.A., and Bokebayeva, G.A. 1991. Effect of brassinosteroids on protein synthesis and plant-cell-ultrastructure under stress conditions. In H.G., Cutler., T, Yokota., G, Adam, (Eds.), Brassinosteroids: Chemistry, Bioactivity and Applications: American Chemical Society: pp. 141-155.

    Google Scholar 

  • Kurepin, L.V., Qaderi, M.M., Back, T.G., Reid, D.M., and Pharis, R.P. 2008. A rapid effect of applied brassinolide on abscisic acid concentrations in Brassica napus leaf tissue subjected to short-therm heat stress. Plant Growth Regul., 55: 165–167.

    Article  CAS  Google Scholar 

  • Larkindale, J., Mishkind, M., and Vierling, E. 2005a. Plant responses to high temperature. In M.A., Jenks, P.M., Hasegawa, (Eds.), Plant Abiotic Stress. Blackwell Publishing: pp. 100-144.

    Google Scholar 

  • Larkindale, J., Hall, J.D., Knight, M.R., and Vierling, E. 2005b. Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol., 138:882–897.

    Article  CAS  PubMed  Google Scholar 

  • Larkindale, J., and Huang, B. 2004. Thermotolerance and antioxidant systems in Agrostis stolonifera: involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. J. Plant Physiol., 161:405–413.

    Article  CAS  PubMed  Google Scholar 

  • Larkindale, J., and Knight, M.R., 2002. Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol., 128: 682–695.

    Article  CAS  PubMed  Google Scholar 

  • Larkindale, J., and Vierling, E. 2008. Core Genome Responses involved in acclimation to High Temperature. Plant Physiol., 146: 748–761.

    Article  CAS  PubMed  Google Scholar 

  • Lee, U., Wie, C., Escobar, M., Williams, B., Hong, S.W., and Vierling, E. 2005. Genetic analysis reveals domain interactions of Arabidopsis Hsp100/ClpB and cooperation with the small heat shock protein chaperone system. Plant Cell., 17: 559–571.

    Article  CAS  PubMed  Google Scholar 

  • Liberet, K., Lewndowska, A., and Zietkiewicz, S. 2008. Chaperones in control of protein disaggregation. EMBO J., 27: 328–335.

    Article  Google Scholar 

  • Liu, H.T., Liu, Y. Y., Pan, Q.H., Yang, H. R., Zhan, J.C., and Huang, W.D. 2006. Novel interrelationship between salicylic acid, abscisic acid, and PIP2-specific phospholipase C in heat acclimation-induced thermotolerance in pea leaves. J. Exp. Bot., 57: 3337–3347.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Zhao, Z., Si, P., Di, C., Han, J., and An, L. 2009. Brassinosteroids alleviate chilling-induced oxidative damage by enhancing antioxidant defense system in suspension cultured cells of Chorispora bungeana. Plant Growth Regul., 59: 207–214.

    Article  CAS  Google Scholar 

  • Mazorra, L. M., 2009. Los brasinoesteroides y su relación con la tolerancia de plántulas de tomate al calor. Doctoral Thesis. Faculty of Biology. University of Havana. Cuba. 100p.

    Google Scholar 

  • Mazorra, LM., and Núñez, M. 2006. Inducción de termo-tolerancia por la 24-epibrasinólida y dos análogos espirostánicos de brasinoesteroides en plantas de tomate. Cult. Trop., 27(3): 89–93.

    Google Scholar 

  • Mazorra, L. M., Núñez, M., Hechavarría, M., Coll, F., and Sánchez-Blanco, M.J. 2002. Influence of brassinosteroids on antioxidant enzymes activity in tomato under different temperatures. Biologia Plantarum., 45(4): 593–596.

    Article  CAS  Google Scholar 

  • Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci., 7: 405–410.

    Article  CAS  PubMed  Google Scholar 

  • Mussig, C., Fischer, S., and Altmann, T. 2002. Brassinosteroid-regulated gene expression. Plant Physiol., 129:1241–1251.

    Article  CAS  PubMed  Google Scholar 

  • Nemhauser, J.L., Mockler, T.C. and Chory, J. 2004. Interdependency of brassinosteroid and auxin signaling in Arabidopsis. PLoS Biol., 2: E258.

    Article  PubMed  Google Scholar 

  • Neta-Sharir, I., Isaacson, T., Lurie, S., and Weiss, D. 2005. Dual role for tomato heat shock protein 21: protecting photosystem II from oxidative stress and promoting color changes during fruit maturation. Plant Cell. 17:1829–1838.

    Article  CAS  PubMed  Google Scholar 

  • Núñez, M., Robaina, C., and Coll, F. 2003. Synthesis and practical applications of brassinosteroid analogs. In S., Hayat., A., Ahmad., Brassinosteroids. Bioactivity and Crop Productivity. Kluwer Academic Publishers. The Netherlands: p. 87–117.

    Google Scholar 

  • Ogweno, J.O., Son, X.S., Shi, K., Hu, W. H., Mao, W.H., Zhou, Y. H., Yu, J.Q., and Nogués, S. 2008. Brassinosteroid alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. J. Plant Growth Regul., 27:49–57.

    Article  CAS  Google Scholar 

  • Rivero, R.M., Ruiz, J.M., and Romero, L. 2004. Oxidative metabolism in tomato plants subjected to heat stress. J. Hort. Sci. Biotechnol., 79:560–564.

    CAS  Google Scholar 

  • Sanmiya, K., Suzuki, K., Egawa, Y., and Shono, M. 2004. Mitochondrial small heat-shock protein enhances thermotolerance in tobacco plants. FEBS Lett., 557:265–268.

    Article  CAS  PubMed  Google Scholar 

  • Singh, I., and Shono, M. 2003. Effect of 24-epibrassinolide on pollen viability during heat-stress in tomato. Indian J. Exp. Biol., 41: 174–176.

    PubMed  Google Scholar 

  • Singh, I., and Shono, M. 2005. Physiological and molecular effects of 24-epibrassinolide, a brassinosteroid, on thermotolerance of tomato. Plant Growth Regul., 47: 111–119.

    Article  CAS  Google Scholar 

  • Szekeres, M., Nemeth, K., Konez-Kalman, Z., Mathur, J., Kauschann, A., Altmann, T., Redei, G.P., Nagy, F., Schell, J., and Koncz, C. 1996. Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450 controlling cell elongation and de-etiolation in Arabidopsis. Cell., 85: 171–182.

    Article  CAS  PubMed  Google Scholar 

  • Vacca, R.A., de Pinto M.C., Valenti, D., Passarella, S., Marra, E., and De Gara, L., 2004. Production of reactive oxygen species, alteration of cytosolic ascorbate peroxidase, and impairment of mitochondrial metabolism are early events in heat shock induced programmed cell death in tobacco bright-yellow 2 cells. Plant Physiol., 134: 1100–1112.

    Article  CAS  PubMed  Google Scholar 

  • Vierling, E. 1991. The roles of heat proteins in plants. Ann. Rev. Plant Mol. Biol., 42:579–620.

    Article  CAS  Google Scholar 

  • Volkov, R.A., Panchuk, I.I., Mullineaux, P.M., and Schoffl, F., 2006. Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis. Plant Mol. Biol., 61: 733–746.

    CAS  Google Scholar 

  • Wang, H., Feng, T., Peng, G.X., Yan, M., Zhou, P., and Tang, X. 2009. Ameliorative effects of brassinosteroid on excess manganese-induced oxidative stress in Zea mays L. leaves. Agric. Sci. China., 8: 1063–1074.

    CAS  Google Scholar 

  • Weaver, M. L., Timm, H., 1989. Screening tomato for high temperature tolerance through pollen viability tests. Hort. Sci., 24: 493–495.

    Google Scholar 

  • Wilen, R.W., Sacco, M., Gusta, L.V., Krishna, P., 1995. Effects of 24-epibrassinolide on freezing and thermotolerance of bromegrass (Bromus inermis) cell cultures. Physiol. Plant., 95:195–202.

    Article  CAS  Google Scholar 

  • Willenkens, H., Chamnongpol, S., Davey, M., Schraudner, M., Langebartels, C., Van Montagu, M., Inze, D., and Van Camp, W. 1997. Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO J., 16: 4806–4816.

    Article  Google Scholar 

  • Young, J.C., Moarefi, I., and Hartl, F.U. 2001. Hsp90: a specialized but essential protein-folding tool. J. Cell Biol., 154: 267–273.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, Y.H., Yu, J.Q., Huang, L.F., and Nogués, S. 2004. The relationship between CO2 assimilation, photosynthetic electron transport and water-water cycle in chill-exposed cucumber leaves under low light and subsequent recovery. Plant Cell Environ., 27: 1503–1514.

    Article  Google Scholar 

  • Zhou, Y.H., Yu, J.Q., Mao, W.H., Huang, L.F., Song, S., and Nogués, S. 2006. Genotypic variation on Rubisco expression, photosynthetic electron flow and antioxidant metabolism in the chloroplasts of chill-exposed cucumber plants. Plant Cell Physiol., 47: 192–199.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, C., Zeng, G.W., and Liu, F., 1996. Effect of epi-brassinolide on the heat shock tolerance and antioxidant metabolism in cucumber seedling. J. Zhejiang Agric. Univ., 22(3): 284–288.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Mazorra, L.M. (2011). Brassinosteroid action and its relation with heat stress mechanisms in plants. In: Hayat, S., Ahmad, A. (eds) Brassinosteroids: A Class of Plant Hormone. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0189-2_10

Download citation

Publish with us

Policies and ethics