Skip to main content

Real-Time PCR Detection Methods for Economically Important Grapevine Related Bacteria

  • Chapter
  • First Online:
Methodologies and Results in Grapevine Research

Abstract

Preventive measures are extremely important for control of diseases that are caused by plant pathogenic bacteria on economically important plants. For this reason, fast and reliable detection methods are required. Along with the time-consuming conventional detection methods such as isolation and culturing of bacteria on media, PCR-based methods have been introduced as supplementary tests for better diagnosis of plant pathogenic bacteria . In the case of non-culturable bacteria, such as Phytoplasma s, PCR-based tests even became indispensable. Real-time PCR has become a widely used platform in nucleic acid detection and quantification in diagnostics. Despite the general guidelines for some of the steps, there are no common guidelines or standard operating procedures for introduction of real-time PCR -based detection systems for pathogens for routine laboratory use. Four cases of detection systems for grapevine pathogenic bacteria that were developed at the National Institute of Biology are presented and discussed here, providing a practical overview of the whole process from the initial assay design to the implementation of the assay into the laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AY:

Aster yellows

BN:

Bois noir

DNA:

Deoxyribonucleic acid

ELISA:

Enzyme-linked immunosorbent assay

EPPO:

European and Mediterranean Plant Protection Organisation

FD:

Flavescence dorée

GYs:

Grapevine yellows

OEPP:

Organisation Européenne et Méditerranéenne pour la Protection des Plantes

PCR:

Polymerase chain reaction

qPCR:

Real-time PCR

References

  • Alma A, Davis RE, Vibio M, Danielli A, Bosco D, Arzone A, Bertaccini A (1996) Mixed infection of grapevines in northern Italy by Phytoplasma s including 16S rRNA RFLP subgroup 16SrI-B strains previously unreported in this host. Plant Dis 80:418–421

    Article  CAS  Google Scholar 

  • Angelini E, Bianchi GL, Filippin L, Morassutti C, Borgo M (2007) A new TaqMan method for the identification of Phytoplasma s associated with grapevine yellows by real-time PCR assay. J Microbiol Methods 68:613–622

    Article  PubMed  CAS  Google Scholar 

  • Baric S, Dalla-Via J (2004). A new approach to apple proliferation detection: a highly sensitive real-time PCR assay. J Microbiol Methods 57:135–145

    Article  PubMed  CAS  Google Scholar 

  • Bertaccini A, 2007. Phytoplasma s: diversity, taxonomy, and epidemiology. Front Biosci 12:673–689

    Article  PubMed  CAS  Google Scholar 

  • Bianco PA, Casati P, Marziliano N (2004) Detection of Phytoplasma s associated with grapevine flavescence dorée disease using real-time PCR . J Plant Pathol 86, 257–61

    CAS  Google Scholar 

  • Boben J, Kramberger P, Petrovič N, Cankar K, Peterka M, Štrancar A. Ravnikar M (2007) Detection and quantification of Tomato mosaic virus in irrigation waters. Eur J Plant Pathol 118:59–71

    Article  CAS  Google Scholar 

  • Botha WJ, Serfontein S, Greyling MM, Berger DK (2001) Detection of Xylophilus ampelinus in grapevine cuttings using a nested polymerase chain reaction. Plant Pathol 50, 515–526

    Article  CAS  Google Scholar 

  • Buh Gašparič M, Cankar K, Žel J, Gruden K, 2008. Comparison of different real-time PCR chemistries and their suitability for detection and quantification of genetically modified organisms. BMC Biotechnol. doi:10.1186/1472-6750-8-26

    Google Scholar 

  • Bustin SA (2005) Real-time, fluorescence-based quantitative PCR: a snapshot of current procedures and preferences. Expert Rev Mol Diagn 5:493–498

    Article  PubMed  CAS  Google Scholar 

  • Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  PubMed  CAS  Google Scholar 

  • Bustin SA, Benes V, Nolan T, Pfaffl MW (2005) Quantitative real-time RT-PCR-a perspective. J Mol Endocrinol 34:597–601

    Article  PubMed  CAS  Google Scholar 

  • Bustin SA, Mueller R, 2005. Real-time reverse transcription PCR (qRT-PCR) and its potential use in clinical diagnosis. Clin Sci 109:365–379

    Article  PubMed  CAS  Google Scholar 

  • Camloh M, Dreo T, Žel J, Ravnikar M (2008) The flexible scope of accreditation in GMO testing and its applicability to plant pathogen diagnostics. EPPO Bulletin 38:178–184

    Article  Google Scholar 

  • Campanharo JC, Lemos MVF, Lemos E (2003). Growth optimization procedures for the phytopathogen Xylella fastidiosa. Cur Microbiol 46:99–102

    Article  CAS  Google Scholar 

  • Cankar K, Štebih D, Dreo T, Žel J, Gruden K (2006). Critical points of DNA quantification by real-time PCR – effects of DNA extraction method and sample matrix on quantification of genetically modified organisms. BMC Biotechnol. doi:10.1186/1472-6750-6-37

    Google Scholar 

  • Carbajal D, Morano KA, Morano LD (2004). Indirect immunofluorescence microscopy for direct detection of Xylella fastidiosa in xylem sap. Cur Microbiol 49:372–375

    Article  CAS  Google Scholar 

  • Christensen NM, Axelsen KB, Nicolaisen M, Schulz A (2005). Phytoplasma s and their interactions with hosts. Trends Plant Sci 10:526–535

    Article  PubMed  CAS  Google Scholar 

  • Christensen NM, Nicolaisen M, Hansen M, Schulz A (2004). Distribution of Phytoplasma s in infected plants as revealed by real-time PCR and bioimaging. Mol Plant Microbe Interact 17:1175–1184

    Article  PubMed  CAS  Google Scholar 

  • Clair D, Larrue J, Aubert G, Gillet J, Cloquemin G, Boudon-Padieu E (2003). A multiplex nested-PCR assay for sensitive and simultaneous detection and direct identification of Phytoplasma in the Elm yellows group and Stolbur group and its use in survey of grapevine yellows in France. Vitis 42:151–57

    CAS  Google Scholar 

  • Council Directive 2000/29/EC of 8 May 2000 on protective measures against the introduction into the Community of organisms harmful to plants or plant products and against their spread within the Community (L169/1,10/07/2000)

    Google Scholar 

  • Daire X, Clair D, Reinert W, Boudon-Padieu E (1997) Detection and differentiation of grapevine yellows Phytoplasma s belonging to the elm yellows group and to the stolbur subgroup by PCR amplification of non-ribosomal DNA. Eur J Plant Pathol 103:507–514

    Article  CAS  Google Scholar 

  • Dinnes J, Deeks J, Kirby J, Roderick P (2005) A methodological review of how heterogeneity has been examined in systematic reviews of diagnostic test accuracy. Health Technol Assess 9:1–128

    CAS  Google Scholar 

  • Dreo T, Gruden K, Manceau C, Janse JD, Ravnikar M (2007) Development of a real-time PCR -based method for detection of Xylophilus ampelinus . Plant Pathol 56:9–16

    Article  CAS  Google Scholar 

  • EPPO/CABI (2003) Data sheets on quarantine pests – grapevine Flavescence dorée Phytoplasma . In: Smith IM, McNamara DG, Scott PR, Holderness M (eds) Quarantine Pests for Europe. CABI International, Wallingford, UK

    Google Scholar 

  • EPPO Standards/Normes OEPP (2004) Diagnostic protocols for regulated pests, Xylella fastidiosa. Bulletin OEPP/EPPO: Bulletin 34:187–119

    Google Scholar 

  • Francis M, Lin H, Rosa JC-L, Doddapaneni H, Civerolo EL (2006) Genome-based PCR primers for specific and sensitive detection and quantification of Xylella fastidiosa. Eur J Plant Pathol 115:203–213

    Article  CAS  Google Scholar 

  • French WJ, Stassi DL, Schaad NW (1978) The use of immunofluorescence for the identification of peach phony bacterium. Phtopathol 68:1106–1108

    Article  Google Scholar 

  • Galetto L, Bosco D, Marzachı C (2005) Universal and groups pecific real-time PCR diagnosis of flavescence doreé (16Sr-V), bois noir (16Sr-XII) and apple proliferation (16Sr-X) Phytoplasma s from field-collected plant hosts and insect vectors. Ann Appl Biol 147:191–201

    Article  CAS  Google Scholar 

  • Gutiérrez-Aguirre I, Mehle N, Delić D, Gruden K, Mumford R, Ravnikar M, 2009. Real-time quantitative PCR based sensitive detection and genotype discrimination of Pepino mosaic virus. J Virol Methods 162:46–55

    Article  PubMed  Google Scholar 

  • Hodgetts J, Boonham N, Mumford R, Dickinson M (2009) Panel of 23S rRNA gene-based real-time PCR assays for improved universal and group-specific detection of Phytoplasma s. Appl Environ Microbiol 75:2945–2950

    Article  PubMed  CAS  Google Scholar 

  • Hogenhout SA, Loria R (2008) Virulence mechanisms of Gram-positive plant pathogenic bacteria . Cur Opin Plant Biol 11:449–456

    Article  CAS  Google Scholar 

  • Hopkins DL (1981) Seasonal concentration of Pierce's disease bacterium in grapevine stems, petioles and leaf veins. Phytopathol 71:415–418

    Article  Google Scholar 

  • Hopkins DL, Purcell AH (2002) Xylella fastidiosa: cause of Pierce's disease of grapevine and other emergent diseases. Plant Dis 86:1056–1066

    Article  Google Scholar 

  • Hren M, Boben J, Rotter A, Kralj P, Gruden K, Ravnikar M (2007) Real-time PCR detection systems for Flavescence dorée and Bois noir Phytoplasma s in grapevine: comparison with conventional PCR detection and application in diagnostics. Plant Pathol 56:785–796

    Article  CAS  Google Scholar 

  • Kogovšek P, Gow L, Pompe-Novak M, Gruden K, Foster GD, Boonham N, Ravnikar M (2008) Single-step RT real-time PCR for sensitive detection and discrimination of Potato virus Y isolates. J Virol Methods 149:1–11

    Article  Google Scholar 

  • Lee I–M, Gundersen–Rindal DE, Davis RE, Bartoszyk IM (1998). Revised classification scheme of Phytoplasma s based on RFLP analyses of 16S rRNA and ribosomal protein gene sequences. Int Journal Syst Evol Microbiol 48:1153–1169

    CAS  Google Scholar 

  • Lelliott RA, Stead DE (1987) Diagnostic procedures for bacterial plant diseases. Methods for the diagnosis of bacterial diseases of plants. Blackwell Scientific Publications, Oxford, UK

    Google Scholar 

  • López MM, Bertolini E, Marco-Noales E, Llop P,Cambra M (2006) Update on molecular tools for detection of plant pathogenic bacteria and viruses. In: Rao JR, Fleming CC, Moore JE, (eds) Molecular diagnostics: current technology and applications. Horizon Bioscience, Norfolk, UK

    Google Scholar 

  • Marzachi C, Palermo S, Boarino A, Veratti F, D'Aquilio M, Loria A, Boccardo G (2001) Optimization of a one–step PCR assay for the diagnosis of Flavescence dorée –related Phytoplasma s in field–grown grapevines and vector populations. Vitis 40:213–217

    CAS  Google Scholar 

  • Margaria P, Turina M, Palmano S (2009) Detection of Flavescence doreée and Bois noir Phytoplasma s, Grapevine leafroll associated virus-1 and -3 and Grapevine virus A from the same crude extract by reverse transcription-RealTime TaqMan assays. Plant Pathol 58:838–845

    Article  Google Scholar 

  • Manceau C, Coutaud MG, Guyon R (2000) Assessment of subtractive hybridization to select pecies and subspecies specific DNA fragments for the identification of Xylophilus ampelinus by polymerase chain reaction (PCR ). Eur J Plant Pathol 106: 243–254

    Article  CAS  Google Scholar 

  • Manceau C, Grall S, Brin C, Guillaumes J (2005) Bacterial extraction from grapevine and detection of Xylophilus ampelinus by a PCR and microwell plate detection system. Bulletin OEPP 34:55–60

    Article  Google Scholar 

  • Minsavage GV, Thompson CM, Hopkins DL, Leite RMVBC, Stall RE (1994) Development of a polymerase chain reactionprotocol for detection of Xylella fastidiosa in plant tissue. Phytopathol 84:456–461

    Article  CAS  Google Scholar 

  • Pelletier C, Salar P, Gillet J, Cloquemin G, Very P, Foissac X, Malembic-Maher S (2009) Triplex real-time PCR assay for sensitive and simultaneous detection of grapevine Phytoplasma s of the 16SrV and 16SrXII-A groups with an endogenous analytical control. Vitis 48:87–95

    CAS  Google Scholar 

  • Pirc M, Ravnikar M, Tomlinson J, Dreo T (2009) Improved fireblight diagnostics using quantitative real-time PCR detection of Erwinia amylovora chromosomal DNA. Plant Pathol 58:872–881

    Article  CAS  Google Scholar 

  • Purcell AH, Hopkins DL (1996) Fastidious xylem-limited bacterial plant pathogens. Ann Rev Phytopathol 34:131–151

    Article  CAS  Google Scholar 

  • Schaad NW, Opgenorth D, Gaush P (2002) Real-time polymerase chain reaction for one-hour on-site diagnosis of Pierce’s disease of grape in early season asymptomatic vines. Phtopathol 92:721–728

    Article  CAS  Google Scholar 

  • Seddas A, Meignoz R, Daire X, Boudon-Padieu E (1996) Generation and characterization of monoclonal antibodies to Flavescence dorée Phytoplasma : serological relationships and differences in electroblot immunoassay profiles of Flavescence dorée and elm yellows Phytoplasma s. European Journal of Plant Pathology 102:757–764

    Article  Google Scholar 

  • Smart CD, Hendson M, Guilhaert MR, Saunders S, Friebertshouser G, Purcell A, Kirkpatrick BC (1998) Seasonal detection of Xylella fastidiosa in grapevines with culture, ELISA and PCR . Phytopathol 88, S83(suppl.)

    Google Scholar 

  • Torres E, Bertolini E, Cambra M, Monton C, Martin MP (2005) Real-time PCR for simultaneous and quantitative detection of quarantine Phytoplasma s from apple proliferation (16SrX) group. Mol Cell Probes 19:334–340

    Article  PubMed  CAS  Google Scholar 

  • Wells JM, Raju BC, Hung HY, Weisburg WG, Mandeico-Paul L, Brenner DJ (1987) Xylella fastidiosa gen. Nov., sp. Nov.: Gram-negative, xylem-limited, fastidious plant bacteria related to Xanthomonas spp. Int J Syst Evol Bacteriol 37:136–143

    Article  CAS  Google Scholar 

  • Willems A, Gillis M, Kersters K, Van Den Broecke L, de Ley J (1987) Transfer of Xanthomonas ampelina Panagopoulos 1969 to a new genus, Xylophilus gen. nov., as Xylophilus ampelinus (Panagopoulos 1969) comb. nov. Int J Syst Bacteriol 37: 422–430

    Article  Google Scholar 

  • Žel J, Mazzara M, Savini C, Cordeil S, Camloh M, Štebih D, Cankar K, Gruden K, Morisset D, Van den Eede G (2008) Method Validation and Quality Management in the Flexible Scope of Accreditation: An Example of Laboratories Testing for Genetically Modified Organisms. Food Anal Method 1:61–72

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Phytosanitary Administration and Phytosanitary Inspectorate of the Republic of Slovenia, Slovenian Ministry of Education, Science and Sport and Ministry of Agriculture, Forestry and Food. We thank Norman W. Schaad (USDA) and Igor Zidarič (Agricultural Institute of Slovenia) for bacterial strains, Gabrijel Seljak, Msc. for field work and Magda Tušek Žnidarič and Nataša Mehle for help with ELISA .

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matjaž Hren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hren, M. et al. (2010). Real-Time PCR Detection Methods for Economically Important Grapevine Related Bacteria. In: Delrot, S., Medrano, H., Or, E., Bavaresco, L., Grando, S. (eds) Methodologies and Results in Grapevine Research. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9283-0_15

Download citation

Publish with us

Policies and ethics