Skip to main content

Microbial Diversity of Cave Ecosystems

  • Chapter
  • First Online:
Geomicrobiology: Molecular and Environmental Perspective

Abstract

The formation of natural caves (speleogenesis) is due to any number of processes that result in the hollowing out of rock, including dissolution, mechanical weathering, volcanic activity, or even the melting of glacial ice. Caves are classified based on the solid rock that they developed within, the proximity to the groundwater table (e.g., above, at, or below it), the speleogenetic history of a feature, and the overall passage morphology and organization (e.g., cave length, passage shape, passage arrangement, passage levels) (Fig. 10.1). Caves are one type of feature that characterizes a karst landscape, which develops in soluble rocks (e.g., limestone, dolomite, gypsum, halite) that roughly coincides with the global distribution of carbonate sedimentary rocks of all geologic ages (e.g., Ford and Williams 2007). Although karst comprises ∼15–20% of the Earth’s ice-free land surface, karst caves are not interconnected, not within the same hydrological drainage basin and definitely not across different drainage basins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfreider A, Krossbacher M, Psenner R (1997) Groundwater samples do not reflect bacterial densities and activity in subsurface systems. Water Res 31:832–840

    Article  CAS  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    PubMed  CAS  Google Scholar 

  • Angert ER, Northup DE, Reysenbach AL, Peek AS, Goebel BM, Pace NR (1998) Molecular phylogenetic analysis of a bacterial community in Sulphur river, Parker cave, Kentucky. Am Mineral 83:1583–1592

    CAS  Google Scholar 

  • Ariño X, Saiz-Jimenez C (1996) Biological diversity and cultural heritage. Aerobiologia 12:279–282

    Google Scholar 

  • Barton HA, Luiszer F (2005) Microbial metabolic structure in a sulfidic cave hot spring: potential mechanisms of biospeleogenesis. J Cave Karst Stud 67:28–38

    CAS  Google Scholar 

  • Barton HA, Northup DE (2007) Geomicrobiology in cave environments: past, current and future perspectives. J Cave Karst Stud 69:163–178

    Google Scholar 

  • Barton HA, Pace NR (2005) Discussion: Persistent coliform contamination in Lechuguilla Cave pools. J Cave Karst Stud 67:55–57

    Google Scholar 

  • Barton HA, Taylor MR, Lubbers BR, Pemberton AC (2006) DNA extraction from low biomass carbonate rock: an improved method with reduce contamination and the low biomass contaminant database. J Microbiol Methods 66:21–31

    Article  PubMed  CAS  Google Scholar 

  • Barton HA, Taylor NM, Kreate MP, Springer AC, Oehrle SA, Bertog JL (2007) The impact of host rock geomicrobiology on bacterial community structure in oligotrophic cave environments. Int J Speleol 36:93–104

    Article  Google Scholar 

  • Bastian F, Alabouvette C, Jurado V, Saiz-Jimenez C (2009a) Impact of biocide treatments on the bacterial communities of the Lascaux cave. Naturwissenschaften 96:863–868

    Article  PubMed  CAS  Google Scholar 

  • Bastian F, Alabouvette C, Saiz-Jimenez C (2009b) Bacteria and free-living amoeba in the Lascaux cave. Res Microbiol 160:38–40

    Article  PubMed  CAS  Google Scholar 

  • Bastian F, Alabouvette C, Saiz-Jimenez C (2009c) The impact of arthropods on fungal community structure in Lascaux cave. J Appl Microbiol 106:1456–1462

    Article  PubMed  CAS  Google Scholar 

  • Bonacci O, Pipan T, Culver DC (2009) A framework for karst ecohydrology. Environ Geol 56:891–900

    Article  Google Scholar 

  • Boston PJ, Hose LD, Northup DE, Spilde MN (2006) The microbial communities of sulfur caves: a newly appreciated geologically driven system on Earth and potential model for Mars. In: Harmon RS, Wicks C (eds) Perspectives on karst geomorphology, hydrology, and geochemistry – a tribute volume to Derek C. Ford and William B. White. Geological Society of America Special Paper 404, pp 331–344

    Google Scholar 

  • Campbell BJ, Engel AS, Porter ML, Takai K (2006) The versatile e-proteobacteria: key players in the sulphur cycle. Nat Rev Microbiol 4:458–468

    Article  PubMed  CAS  Google Scholar 

  • Canganella F, Bianconi G, Gambacorta A, Kato C, Uematsu K (2002) Characterisation of ­heterotrophic microorganisms isolated from the “Grotta Azzura” of Cape Palinuro (Salerno, Italy). Mar Ecol 23:1–10

    Article  Google Scholar 

  • Caumartin V (1963) Review of the microbiology of underground environments. Bull Nat Speleol Soc 25:1–14

    Google Scholar 

  • Caumartin V, Renault P (1958) La corrosion biochimique dans un reseau karstique et al genèse du mondmilch. Notes Biospéleologiques 13:87–109

    Google Scholar 

  • Chelius MK, Moore JC (2004) Molecular phylogenetic analysis of Archaea and Bacteria in Wind Cave, South Dakota. Geomicrobiol J 21:123–134

    Article  CAS  Google Scholar 

  • Chelius MK, Beresford G, Horton H, Quirk M, Selby G, Simpson RT, Horrocks R, Moore JC (2009) Impacts of alterations of organic inputs on the bacterial community within the sediments of Wind Cave, South Dakota, USA. Int J Speleol 38:1–10

    Article  Google Scholar 

  • Chen Y, Wu L, Boden R, Hillebrand A, Kumaresan D, Moussard H, Baciu M, Lu Y, Murrell JC (2009) Life without light: microbial diversity and evidence of sulfur- and ammonium-based chemolithotrophy in Movile Cave. ISME J 3:1093–1104

    Article  PubMed  CAS  Google Scholar 

  • Coppellotti Krupa O, Guidolin L (2003) Taxonomy and ecology of ciliate fauna (Protozoa, Ciliophora) from karst caves in North East Italy. Subterranean Biol 1:3–11

    Google Scholar 

  • Culver DC, Pipan T (2009) The biology of caves and other subterranean habitats. Oxford University Press, Oxford

    Google Scholar 

  • Dawson SC, Pace NR (2002) Novel kingdom-level eukaryotic diversity in anoxic environments. PNAS 99:8324–8329

    Article  PubMed  CAS  Google Scholar 

  • De Luca E, Toniello V, Coppellotti O (2005) Protozoi de acque carsiche in un’area nord orientale della provincial di Treviso. Speleol Venta 13:124–131

    Google Scholar 

  • DeSantis TZ, Hugenholtz P, Larsen N et al (2006) greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–72

    Article  PubMed  CAS  Google Scholar 

  • Dobat K (1998) Flore de la luminére artificiélle (lampenflora-maladie verte). In: Juberthie C, Decu V (eds) Encyclopaedia Biospeleologica, Tome 2. Société Biospéologie, Moulis-Bucarest, pp 1325–1335

    Google Scholar 

  • Dupont J, Jacquet C, Dennetière B, Lacoste S, Bousta F, Orial G, Cruaud C, Couloux A, Roquebert MF (2007) Invasion of the French Palaeolithic painted cave of Lascaux by members of the Fusarium solani species complex. Mycologia 99:526–533

    Article  PubMed  CAS  Google Scholar 

  • Egemeier S (1981) Cave development by thermal waters. Bull Nat Speleol Soc 43:31–51

    CAS  Google Scholar 

  • Engel AS (2007) Observations on the biodiversity of sulfidic karst habitats. J Cave Karst Stud 69:187–206

    CAS  Google Scholar 

  • Engel AS, Northup DE (2008) Caves and karst as model systems for advancing the microbial ­sciences. In: Martin J, White WB (eds) Frontiers in Karst Research. Karst Waters Institute Special Publication 13, LeesburgVirginia, pp 37–48

    Google Scholar 

  • Engel AS, Porter ML, Kinkle BK, Kane TC (2001) Ecological assessment and geological significance of microbial communities from Cesspool Cave, Virginia. Geomicrobiol J 18:259–274

    Article  CAS  Google Scholar 

  • Engel AS, Lee N, Porter ML, Stern LA, Bennett PC, Wagner M (2003) Filamentous “Epsilonproteobacteria” dominate microbial mats in sulfidic caves. Appl Environ Microbiol 69:5503–5511

    Article  PubMed  CAS  Google Scholar 

  • Engel AS, Porter ML, Stern LA, Quinlan S, Bennett PC (2004a) Bacterial diversity and ecosystem function of filamentous microbial mats from aphotic (cave) sulfidic springs dominated by chemolithoautotrophic “Epsilonproteobacteria.. FEMS Microbiol Ecol 51:31–53

    Article  PubMed  CAS  Google Scholar 

  • Engel AS, Stern LA, Bennett PC (2004b) Microbial contributions to cave formation: new insights into sulfuric acid speleogenesis. Geology 32:369–372

    Article  CAS  Google Scholar 

  • Engel AS, Meisinger DB, Porter ML, Payn RA, Schmid M, Stern LA, Schleifer KH, Lee NM (2009) Linking phylogenetic and functional diversity to nutrient spiraling in microbial mats from Lower Kane Cave (USA). ISME J 4:98–110. doi:10.1038/ismej.2009.91

    Google Scholar 

  • Farnleitner AH, Wilhartitz I, Ryzinska G et al (2005) Bacterial dynamics in spring water of alpine karst aquifers indicates the presence of stable autochthonous microbial endokarst communities. Environ Microbiol 7:1248–1259

    Article  PubMed  CAS  Google Scholar 

  • Faust B (1949) The formation of saltpeter in caves. Bull Nat Speleol Soc 11:17–23

    Google Scholar 

  • Faust B (1968) Notes on the subterranean accumulation of saltpetre. J Spelean Hist 1:3–11

    Google Scholar 

  • Ford D, Williams P (2007) Karst hydrogeology and geomorphology. Wiley, West Sussex

    Google Scholar 

  • Gale SJ (1992) Long-term landscape evolution in Australia. Earth Surf Proc Land 17:323–343

    Article  Google Scholar 

  • Gary MO, Sharp JM Jr (2006) Volcanogenic karstification of Sistema Zacatón. In: Harmon RS, Wicks C (eds) Perspectives on Karst Geomorphology, Hydrology, and Geochemistry – A tribute volume to Derek C. Ford and William B. White. Geological Society of America Special Paper 404, pp 79–89

    Google Scholar 

  • Gittleson SM, Hoover RL (1969) Cavernicolous protozoa: review of the literature and new studies in Mammoth Cave, Kentucky. Annales Spéléol 24:737–776

    Google Scholar 

  • Goldscheider N, Hunkeler D, Rossi P (2006) Review: microbial biocenoses in pristine aquifers and an assessment of investigative methods. Hydrogeol J 14:926–941

    Article  CAS  Google Scholar 

  • Gonzalez JM, Portillo MC, Saiz-Jimenez C (2006) Metabolically active Crenarchaeota in Altamira cave. Naturwissenschaften 93:42–45

    Article  PubMed  CAS  Google Scholar 

  • Gounot AM (1967) Le microflore des limons argileaux souterains: son activité productrice dans la biocénose cavernicole. Annal Spéléol 22:23–143

    Google Scholar 

  • Grobbelaar JU (2000) Lithophytic algae: a major threat to the karst formation of show caves. J Appl Phycol 12:309–315

    Article  Google Scholar 

  • Hasenclever HF, Shacklette MH, Young RV, Gelderman GA (1967) The natural occurrence of Histoplasma capsulatum in a cave: 1. epidemiological aspects. Am J Epidemiol 86:238–245

    PubMed  CAS  Google Scholar 

  • Hess WH (1900) The origin of nitrates in cavern earths. J Geol 8:129–134

    Article  CAS  Google Scholar 

  • Holmes AJ, Tujula NA, Holley M, Contos A, James JM, Rogers P, Gillings MR (2001) Phylogenetic structure of unusual aquatic microbial formations in Nullarbor caves, Australia. Environ Microbiol 3:256–264

    Article  PubMed  CAS  Google Scholar 

  • Hose LD, Palmer AN, Palmer MV, Northup DE, Boston PJ, DuChene HR (2000) Microbiology and geochemistry in a hydrogen-sulphide rich karst environment. Chem Geol 169:399–423

    Article  CAS  Google Scholar 

  • Howarth FG (1973) The cavernicolous fauna of Hawaiian lava tubes, 1. Introduction. Pac Insect 15:139–151

    Google Scholar 

  • Hubbard DA, Herman JS, Bell PE (1986) The role of sulfide oxidation in the genesis of Cesspool Cave, Virginia, USA. In: 9th International Congress of Speleology, vol 1. Barcelona, Spain, pp 255–257

    Google Scholar 

  • Humphreys WF (1999) Physico-chemical profile and energy fixation in Bundera Sinkhole, an anchialine remiped habitat in north-western Australia. J R Soc West Aust 82:89–98

    Google Scholar 

  • Hunter AJ, Northup DE, Dahm CN, Boston PJ (2004) Persistent coliform contamination in Lechuguilla Cave pools. J Cave Karst Stud 66:102–110

    Google Scholar 

  • Hunter AJ, Northup DE, Dahm CN, Boston PJ (2005) Persistent coliform contamination in Lechuguilla Cave pools, response: Barton and Pace discussion. J Cave Karst Stud 67:133–135

    Google Scholar 

  • Hutchens E, Radajewski S, Dumont MG, McDonald IR, Murrell JC (2004) Analysis of methanotrophic bacteria in Movile Cave by stable isotope probing. Environ Microbiol 6:111–120

    Article  PubMed  CAS  Google Scholar 

  • Ikner LA, Toomey RS, Nolan G, Neilson JW, Pryor BM, Maier R (2007) Culturable microbial diveristy and the impact of tourism in Kartchner Caverns, Arizona. Microb Ecol 53:30–42

    Article  PubMed  Google Scholar 

  • Jannasch HW (1985) Review lecture: the chemosynthetic support of life and the microbial ­diversity at deep-sea hydrothermal vents. Proc R Soc Lond Ser B Biol Sci 225:277–297

    Article  Google Scholar 

  • Kelly WR, Panno SV, Hackley KC, Martinsek AT, Krapac IG, Weibel CP, Storment EC (2009) Bacteria contamination of groundwater in a mixed land-use karst region. Water Qual Expo Health 1:69–78

    Article  CAS  Google Scholar 

  • Klimchouk AB (2007) Hypogene speleogenesis: hydrogeological and morphogenetic perspective. Special Paper No. 1. National Cave and Karst Research Institute, Carlsbad, New Mexico

    Google Scholar 

  • Laiz L, Groth I, Gonzalez I, Saiz-Jimenez C (1999) Microbiological study of the dripping waters in Altamira cave (Santillana del Mar, Spain). J Microbiol Methods 36:129–138

    Article  PubMed  CAS  Google Scholar 

  • Laiz L, Gonzalez-Delvalle M, Hermosin B, Ortiz-Martinez A, Saiz-Jimenez C (2003) Isolation of cave bacteria and substrate utilization at different temperatures. Geomicrobiol J 20:479–489

    Article  CAS  Google Scholar 

  • Landolt JC, Stephenson SL, Slay ME (2006) Dictyostelid cellular slime moulds from caves. J Cave Karst Stud 68:22–26

    Google Scholar 

  • Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. PNAS 82:6955–6959

    Article  PubMed  CAS  Google Scholar 

  • Lavoie KH, Northup DE (2006) Bacteria as indicators of human impact in caves. In: Rea GT (ed) 7th National Cave and Karst Management Symposium, Proceedings. NICKMS Steering Committee, Albany, NY, pp 40–47

    Google Scholar 

  • Lehman RM (2007) Understanding of aquifer microbiology is tightly linked to sampling approach. Geomicrobiol J 24:331–341

    Article  CAS  Google Scholar 

  • Macalady JL, Lyon EH, Koffman B, Albertson LK, Meyer K, Galdenzi S, Mariani S (2006) Dominant microbial populations in limestone-corroding stream biofilms, Frasassi Cave system, Italy. Appl Environ Microbiol 72:5596–5609

    Article  PubMed  CAS  Google Scholar 

  • Macalady JL, Jones DS, Lyon EH (2007) Extremely acidic, pendulous cave wall biofilms from the Frasassi Cave system, Italy. Environ Microbiol 9:1402–1414

    Article  PubMed  CAS  Google Scholar 

  • Mahler BJ, Personne JC, Lods GF, Drogue C (2000) Transport of free and particulate-associated bacteria in karst. J Hydrol 238:179–193

    Article  Google Scholar 

  • Meisinger DB, Zimmermann J, Ludwig W, Schleifer KH, Wanner G, Schmid M, Bennett PC, Engel AS, Lee NM (2007) In situ detection of novel Acidobacteria in microbial mats from a chemolithoautotrophically based cave ecosystem (Lower Kane Cave, WY, USA). Environ Microbiol 9:1523–1534

    Article  PubMed  CAS  Google Scholar 

  • Mikell AT, Smith CL, Richardson JC (1996) Evaluation of media and techniques to enumerate heterotrophic microbes from karst and sand aquifer springs. Microb Ecol 31:115–124

    Article  Google Scholar 

  • Morehouse DF (1968) Cave development via the sulfuric acid reaction. Bull Nat Speleol Soc 30:1–10

    Google Scholar 

  • Mulec J, Kosi G (2009) Lampenflora algae and methods of growth control. J Cave Karst Stud 71:109–115

    CAS  Google Scholar 

  • Mulec J, Kosi G, Vrhovšek D (2008) Characterization of cave aerophytic algal communities and effects of irradiance levels on production of pigments. J Cave Karst Stud 70:3–12

    CAS  Google Scholar 

  • Nieves-Rivera ÁM (2003) Mycological survey of Río Camuy Caves Park, Puerto Rico. J Cave Karst Stud 65:23–29

    Google Scholar 

  • Northup DE, Lavoie K (2001) Geomicrobiology of caves: a review. Geomicrobiol J 18:199–222

    Article  CAS  Google Scholar 

  • Northup DE, Beck KM, Mallory LM (1997) Human impact on the microbial communities of Lechuguilla Cave: is protection possible during active exploration? J Cave Karst Stud 59:166

    Google Scholar 

  • Northup DE, Dahm CN, Melim LA et al (2000) Evidence for geomicrobiological interactions in Guadalupe Caves. J Cave Karst Stud 62:80–90

    CAS  Google Scholar 

  • Northup DE, Barns SM, Yu LE et al (2003) Diverse microbial communities inhabiting ferromanganese deposits in Lechuguilla and Spider caves. Environ Microbiol 5:1071–1086

    Article  PubMed  Google Scholar 

  • Opsahl SP, Chanton JP (2006) Isotopic evidence for methane-based chemosynthesis in the Upper Floridan aquifer food web. Oecologia 150:89–96

    Article  PubMed  Google Scholar 

  • Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276:734–740

    Article  PubMed  CAS  Google Scholar 

  • Palmer AN (2007) Cave Geology. Cave Books, Dayton, OH

    Google Scholar 

  • Porter ML, Engel AS (2008) Diversity of uncultured Epsilonproteobacteria from terrestrial ­sulfidic caves and springs. Appl Environ Microbiol 74:4973–4977

    Article  PubMed  CAS  Google Scholar 

  • Porter ML, Engel AS, Kinkle B, Kane TC (2009) Productivity-diversity relationships from chemolithoautotrophically based sulfidic karst systems. Int J Speleol 38:27–40

    Article  Google Scholar 

  • Principi P (1931) Fenomeni di idrologia sotterranea nei dintorni di Triponzo (Umbria). Grotte d’Ital 5:1–4

    Google Scholar 

  • Pronk M, Goldscheider N, Zopfi J (2006) Dynamics and interaction of organic carbon, turbidity and bacteria in a karst aquifer system. Hydrogeol J 14:473–484

    Article  CAS  Google Scholar 

  • Pronk M, Goldscheider N, Zopfi J (2009) Microbial communities in karst groundwater and their potential use for biomonitoring. Hydrogeol J 17:37–48

    Article  Google Scholar 

  • Provencio PP, Polyak VJ (2001) Iron oxide-rich filaments: possible fossil bacteria in Lechuguilla Cave, New Mexico. Geomicrobiol J 18:297–309

    Article  CAS  Google Scholar 

  • Roldán M, Hernández-Mariné M (2009) Exploring the secrets of the three-dimensional architecture of phototrophic biofilms in caves. Int J Speleol 38:41–53

    Article  Google Scholar 

  • Romero A (2009) Cave Biology: life in darkness. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rusterholtz KJ, Mallory LM (1994) Density, activity, and diversity of bacteria indigenous to a karstic aquifer. Microb Ecol 28:79–99

    Article  Google Scholar 

  • Sahl JW, Fairfield N, Harris JK, Wettergreen D, Stone WC, Spear JR (2010) Novel microbial diversity retrieved from an autonomous robotic exploration of the world’s deepest vertical phreatic sinkhole. Astrobiology 10:201–213

    Google Scholar 

  • Sanchez-Moral S, Cañaveras JC, Laiz L, Saiz-Jimenez C, Bedoya J, Luque L (2003) Biomediated precipitation of calcium carbonate metastable phases in hypogean environments. Geomicrobiol J 20:491–500

    Article  CAS  Google Scholar 

  • Sarbu SM (1990) The unusual fauna of a cave with thermomineral waters containing H2S from Southern Dobrogea, Romania. Mém Biospéol 17:191–195

    Google Scholar 

  • Sarbu SM, Kane TC, Kinkle BK (1996) A chemoautotrophically based cave ecosystem. Science 272:1953–1955

    Article  PubMed  CAS  Google Scholar 

  • Schabereiter-Gurtner C, Saiz-Jimenez C, Piñar G, Lubitz W, Rölleke S (2002a) Altamira Cave Paleolithic paintings harbour partly unknown bacterial communities. FEMS Microbiol Lett 211:7–11

    Article  PubMed  CAS  Google Scholar 

  • Schabereiter-Gurtner C, Saiz-Jimenez C, Piñar G, Lubitz W, Rölleke S (2002b) Phylogenetic 16S rRNA analysis reveals the presence of complex and partly unknown bacterial communities in Tito Bustillo Cave, Spain, and on its Palaeolithic paintings. Environ Microbiol 4:392–400

    Article  PubMed  CAS  Google Scholar 

  • Schabereiter-Gurtner C, Saiz-Jimenez C, Piñar G, Lubitz W, Rölleke S (2004) Phylogenetic ­diversity of bacteria associated with Paleolithic paintings and surrounding rock walls in two Spanish caves (Llonín and La Garma). FEMS Microbiol Ecol 47:235–247

    Article  PubMed  CAS  Google Scholar 

  • Shabarova T, Pernthaler J (2009) Investigation of bacterioplankton communities in aquatic karst pools in Bärenschacht Cave of Bernese Oberland. In: White WB (ed) 15th International ­Congress of Speleology, Proceedings, vol 1, Symposia Part 1. National Speleological Society, Huntsville, Alabama, USA, pp 416–421

    Google Scholar 

  • Sket B (2004) The cave hygropetric – a little known habitat and its inhabitants. Arch Hydrobiol 160:413–425

    Google Scholar 

  • Smith T, Olson R (2007) A taxonomic survey of lamp flora (algae and cyanobacteria) in electrically lit passages within Mammoth Cave National Park, Kentucky. Int J Speleol 36:105–114

    Article  Google Scholar 

  • Snider JR, Goin C, Miller RV, Boston PJ, Northup DE (2009) Ultraviolet radiation sensitivity in cave bacteria: evidence of adaptation to the subsurface? Int J Speleol 38:11–22

    Article  Google Scholar 

  • Spear JR, Baton HA, Robertson CE, Francis CA, Pace NR (2007) Microbial community biofabrics in a geothermal mine adit. Appl Environ Microbiol 73:6172–6180

    Article  PubMed  CAS  Google Scholar 

  • Spilde MN, Northup DE, Boston PJ, Schelble RT, Dano KE, Crossey LJ, Dahm CN (2005) Geomicrobiology of cave ferromanganese deposits: a field and laboratory investigation. Geomicrobiol J 22:99–116

    Article  CAS  Google Scholar 

  • Sudzuki M, Hosoyama Y (1991) Microscopic animals from Gyoku-sen-dô Cave and its water quality. J Speleol Soc Japan 16:38–44

    Google Scholar 

  • Symk B, Drzal M (1964) Research on the influence of microorganisms on the development of karst phenomena. Geog Pol 2:57–60

    Google Scholar 

  • Taboroši D (2006) Biologically influenced carbonate speleothhems. In: Harmon RS, Wicks C (eds) Perspectives on Karst Geomorphology, Hydrology, and Geochemistry – A tribute volume to Derek C. Ford and William B. White. Geological Society of America Special Paper 404, pp 307–317

    Google Scholar 

  • Taylor MR (1999) Dark Life: Martian Nanobacteria, Rock-eating Cave Bugs, and Other Extreme Organisms of Inner earth and Outer Space. Scribner, New York

    Google Scholar 

  • van Beynen P, Townsend K (2005) A disturbance index for karst environments. Environ Manage 36:101–116

    Article  PubMed  Google Scholar 

  • Vlasceanu L (1999) Thriving in the dark: the microbiology of two chemoautotrophically-based groundwater ecosystems. PhD Dissertation, University of Cincinnati, Cincinnati, OH

    Google Scholar 

  • Vlasceanu L, Popa R, Kinkle BK (1997) Characterization of Thiobacillus thioparus LV43 and its distribution in a chemoautotrophically based groundwater ecosystem. Appl Environ Microbiol 63:3123–3127

    PubMed  CAS  Google Scholar 

  • Vlasceanu L, Sarbu SM, Engel AS, Kinkle BK (2000) Acidic cave-wall biofilms located in the Frasassi Gorge, Italy. Geomicrobiol J 17:125–139

    Article  CAS  Google Scholar 

  • Walochnik J, Mulec J (2009) Free-living amoebae in carbonate precipitating microhabitats of karst caves and a new vahlkampfiid amoeba, Allovahlkampfia spelaea gen. nov., sp. nov. Acta Protozool 48:25–33

    Google Scholar 

  • Weidler GW, Dornmayr-Pfaffenhuemer M, Gerbl FW, Heinen W, Stan-Lotter H (2007) Communities of Archaea and Bacteria in a subsurface radioactive thermal spring in the Austrian Central Alps, and evidence of ammonia-oxidizing Crenarchaeota source. Appl Environ Microbiol 73:259–270

    Google Scholar 

  • Went FW (1969) Fungi associated with stalactite growth. Science 16:385–386

    Article  Google Scholar 

  • White WB, Culver DC (2000) Cave, definition of. In: Culver DC, White WB (eds). Encyclopedia of Caves. Elsevier Academic Press, Burlington, MA, pp. 81–85

    Google Scholar 

  • White WB (2002) Karst hydrology: recent developments and open questions. Eng Geol 65:85–105

    Article  Google Scholar 

  • White WB (2009) Proceedings, International Congress of Speleology, Kerrville, Texas

    Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. PNAS 95:6578–6583

    Article  PubMed  CAS  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    PubMed  CAS  Google Scholar 

  • Zhou JP, Gu YQ, Zou CS, Mo MH (2007) Phylogenetic diversity of bacteria in an earth-cave in Guizhou Province, Southwest of China. J Microbiol 45:105–112

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I appreciate the stimulating conversations and ideas to improve this review that came from M.L. Porter, J. Mulec, and N. Lee. Support for this review was provided by the United States National Science Foundation (DEB-0640835), the Louisiana Board of Regents (LEQSF [2006-09]-RD-A-03 and NSF/LEQSF(2005)-Pfund-04), and Louisiana State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annette Summers Engel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Engel, A.S. (2010). Microbial Diversity of Cave Ecosystems. In: Barton, L., Mandl, M., Loy, A. (eds) Geomicrobiology: Molecular and Environmental Perspective. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9204-5_10

Download citation

Publish with us

Policies and ethics