Skip to main content

Quantum Monte Carlo for Electronic Structure

  • Chapter
  • First Online:
Practical Aspects of Computational Chemistry
  • 3093 Accesses

Abstract

It is anticipated that quantum Monte Carlo methods will experience a tremendous growth in usage with the need for high accuracy in the determination of the electronic structure of atoms, molecules, and solids in increasingly more complicated systems. Complexity arising in biological systems, nanosystems in a variety of geometries, and a range of chemical composition will dictate the use of these methods because they provide the capability of rapid adaptation to large multiprocessor computing environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.M. Hammersley, D.C. Handscomb, Monte Carlo Methods (Methuen, London, 1964)

    Google Scholar 

  2. M.H. Kalos, P.A. Whitlock, Monte Carlo Methods (Wiley, New York, 1986)

    Book  Google Scholar 

  3. B.L. Hammond, W.A. Lester Jr., P.J. Reynolds, Monte Carlo Methods in Ab Initio Quantum Chemistry (World Scientific, Singapore, 1994)

    Book  Google Scholar 

  4. A. Aspuru-Guzik et al., in Quantum Monte Carlo: Theory and Applications to Atomic, Molecular and Nano Systems, ed. by M. Rieth, W. Schommers. Handbook of Theoretical and Computational Nanotechnology, vol. 3 (American Scientific Publishers, Stevenson Ranch, CA, 2005), pp. 644–702

    Google Scholar 

  5. J.B. Anderson, Quantum Monte Carlo (Oxford, New York, 2007)

    Google Scholar 

  6. A. Szabo, N.S. Ostlund, Modem Quantum Chemistry (MacMillan, New York, 1982)

    Google Scholar 

  7. M.J.T. Jordan et al., in Quantum Effects in Loosely Bound Complexes. Proceedings of the Pacifichem Symposium on Advances in Quantum Monte Carlo. ACS Symposium Series, ed. by J.B. Anderson, S.M. Rothstein, vol. 953 (American Chemical Society, Washington, DC, 2007), pp. 101–140

    Google Scholar 

  8. A.B. McCoy, in Vibrational Excited States by Diffusion Monte Carlo. Proceedings of the Pacifichem Symposium on Advances in Quantum Monte Carlo. ACS Symposium Series, ed. by J.B. Anderson, S.M. Rothstein, vol. 953 (American Chemical Society, Washington, DC, 2007), pp. 147–164

    Google Scholar 

  9. L. Piela, Ideas of Quantum Chemistry (Elsevier, New York, 2007)

    Google Scholar 

  10. A.J. Williamson et al., Linear-scaling quantum Monte Carlo calculations. Phys. Rev. Lett. 87, 246406 (2001)

    Article  CAS  Google Scholar 

  11. S. Manten, A. Lüchow, Improved Scaling in Diffusion Quantum Monte Carlo with Localized Molecular Orbitals, in Quantum Monte Carlo Methods, Part II, ed. by S.M. Rothstein, W.A. Lester Jr., S. Tanaka (World Scientific, Singapore, 2002), pp. 30–40

    Google Scholar 

  12. S. Manten, A. Lüchow, Linear scaling for the local energy in quantum Monte Carlo. J. Chem. Phys. 119, 1307–1312 (2003)

    Article  CAS  Google Scholar 

  13. A. Aspuru-Guzik et al., A sparse algorithm for the evaluation of the local energy in quantum Monte Carlo. J. Comp. Chem. 26, 708–715 (2005)

    Article  CAS  Google Scholar 

  14. A. Aspuru-Guzik et al., Zori 1.0: A parallel quantum Monte Carlo electronic package. J. Comp. Chem. 26, 856–862 (2005)

    Article  CAS  Google Scholar 

  15. J.B. Anderson, A random-walk simulation of the Schrödinger equation: H +3 . J. Chem. Phys. 63, 1499–1503 (1975)

    Article  CAS  Google Scholar 

  16. A. Lüchow, J.B. Anderson, Monte Carlo methods in electronic structures for large systems. Ann. Rev. Phys. Chem. 51, 501–526 (2000)

    Article  Google Scholar 

  17. W.M.C. Foulkes et al., Quantum Monte Carlo simulations of solids. Rev. Mod. Phys. 73, 33–83 (2001)

    Article  CAS  Google Scholar 

  18. W.A. Saidi, S. Zhang, H. Krankauer, Bond breaking with auxiliary field quantum Monte Carlo. J. Chem. Phys. 127, 144101 (2007) (and references contained therein)

    Google Scholar 

  19. W.K. Yuen, T.F. Farrar, S.M. Rothstein, No-compromise reptation quantum Monte Carlo. J. Phys. A: Math. Theor. 40, F639–F646 (2007) (and references contained therein)

    Google Scholar 

  20. N. Metropolis et al., Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)

    Article  CAS  Google Scholar 

  21. D. Bressanini, P.J. Reynolds, Between classical and quantum Monte Carlo methods: “Variational” QMC. Adv. Chem. Phys. 105, 37 (1998)

    Article  Google Scholar 

  22. P.J. Reynolds et al., Fixed-node quantum Monte Carlo for molecules. J. Chem. Phys. 77, 5593–5603 (1982)

    Article  CAS  Google Scholar 

  23. C.J. Umrigar, M.P. Nightingale, K. Runge, A diffusion Monte Carlo algorithm with very small time-step errors. J. Chem. Phys. 99, 2865–2890 (1993)

    Article  CAS  Google Scholar 

  24. J.W. Moskowitz, K.E. Schmidt, Can Monte Carlo Methods Achieve Chemical Accuracy? Monte Carlo Methods in Quantum Problems (Reidel, Dordrecht, 1982), pp. 59–70

    Google Scholar 

  25. J.B. Anderson, Quantum chemistry by random walk. H 2P, H +3 D3h 1A’1, H 2 3Σ +u , H4 1Σ +g , Be 1S. J. Chem. Phys. 65, 4121–4127 (1976)

    Article  CAS  Google Scholar 

  26. R.M. Grimes et al., Quantum Monte Carlo approach to electronically excited molecules. J. Chem. Phys. 85, 4749–4750 (1986)

    Article  CAS  Google Scholar 

  27. M. Burkatzki, C. Filippi, M. Dolg, Energy-consistent pseudopotentials for quantum Monte Carlo calculations. J. Chem. Phys. 126, 234105 (2007) (and references contained therein)

    Google Scholar 

  28. D.M. Ceperley, The statistical error of green’s function Monte Carlo. J. Stat. Phys. 43, 815–826 (1996)

    Article  Google Scholar 

  29. M.M. Hurley, P.A. Christiansen, Relativistic effective potentials in quantum Monte Carlo calculations. J. Chem. Phys. 86, 1069–1070 (1987)

    Article  CAS  Google Scholar 

  30. B.L. Hammond, P.J. Reynolds, W.A. Lester Jr., Valence quantum Monte Carlo with ab initio effective core potentials. J. Chem. Phys. 87, 1130–1136 (1987)

    Article  CAS  Google Scholar 

  31. M. Caffarel et al., Multireference quantum Monte Carlo study of the O 4 molecule. Phys. Rev. Lett. 99, 153001 (2007)

    Article  Google Scholar 

  32. A. Aspuru-Guzik et al., Quantum Monte Carlo for electronic excitations of free-base porphyrin. J. Chem. Phys. 120, 3049–3050 (2004)

    Article  CAS  Google Scholar 

  33. A. Scemama, P. Chaquin, M. Caffarel, Electron pair localization function: A practical tool to visualize electron localization in molecules from quantum Monte Carlo data. J. Chem. Phys. 121, 1725–1735 (2004)

    Article  CAS  Google Scholar 

  34. A.D. Becke, K.E. Edgecombe, A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 92, 5397–5403 (1990)

    Article  CAS  Google Scholar 

  35. B. Austin et al., in Linear-Scaling Evaluation of the Local Energy in Quantum Monte Carlo. Proceedings of the Pacifichem Symposium on Advances in Quantum Monte Carlo. ACS Symposium Series, ed. by J.B. Anderson, S.M. Rothstein, vol. 953 (American Chemical Society, Washington, DC, 2007), pp. 55–68

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098, and by the U.S. National Science Foundation under grant 0809969. Sect. 15.3.3 was taken from the author’s publication: Austin et al. [35].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William A. Lester Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lester, W.A. (2009). Quantum Monte Carlo for Electronic Structure. In: Leszczynski, J., Shukla, M. (eds) Practical Aspects of Computational Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2687-3_15

Download citation

Publish with us

Policies and ethics