Skip to main content
Log in

The statistical error of green's function Monte Carlo

  • Articles
  • Part 3. Condensed Matter Physics
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The statistical error in the ground state energy as calculated by Green's Function Monte Carlo (GFMC) is analyzed and a simple approximate formula is derived which relates the error to the number of steps of the random walk, the variational energy of the trial function, and the time step of the random walk. Using this formula it is argued that as the thermodynamic limit is approached withN identical molecules, the computer time needed to reach a given error per molecule increases asN h where 0.5 <b < 1.5 and as the nuclear chargeZ of a system is increased the computer time necessary to reach a given error grows asZ 5.5. Thus GFMC simulations will be most useful for calculating the properties of lowZ elements. The implications for choosing the optimal trial function from a series of trial functions is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Metropolis and S. Ulam,J. Amer. Stat. Assoc. 44:335, (1949).

    Article  MATH  Google Scholar 

  2. M. H. Kalos,Phys. Rev. 128:1791 (1962);J. Comput. Phys. 1:257 (1966);Phys. Rev. A 2:250 (1970).

    Article  ADS  Google Scholar 

  3. M. H. Kalos, D. Levesque, and L. Verlet,Phys. Rev. A 9:2178 (1974).

    Article  ADS  Google Scholar 

  4. P. A. Whitlock, M. H. Kalos, G. V. Chester, and D. M. Ceperley,Phys. Rev. B 19:5598 (1979).

    Article  ADS  Google Scholar 

  5. D. M. Ceperley and B. J. Alder,Phys. Rev. Lett. 45:566 (1980).

    Article  ADS  Google Scholar 

  6. M. A. Lee, K. E. Schmidt, M. H. Kalos, and G. V. Chester,Phys. Rev. Letts. 46:729, (1981).

    ADS  Google Scholar 

  7. D. M. Ceperley and B. J. Alder, to be published.

  8. J. B. Anderson,J. Chem. Phys. 63:1499 (1975);J. Chem. Phys. 65:4121 (1976);J. Chem. Phys. 73:3897 (1980);J. Chem. Phys. 74:6307 (1881).

    Article  ADS  Google Scholar 

  9. P. J. Reynolds, D. M. Ceperley, B. J. Alder, and W. A. Lester,J. Chem. Phys. 77:5593 (1982).

    Article  ADS  Google Scholar 

  10. D. M. Ceperley and M. H. Kalos inMonte Carlo Methods in Statistical Physics, p. 145, K. Binder, ed. (Springer-Verlag, New York/Berlin, 1977).

    Google Scholar 

  11. D. M. Ceperley and B. J. Alder,J. Chem. Phys. 81:5833 (1984).

    Article  ADS  Google Scholar 

  12. G. E. Forsythe and R. A. Leibler,MTAC 4:127 (1950).

    Google Scholar 

  13. D. Ceperley,J. Comput. Phys 51:404 (1983).

    Article  MATH  Google Scholar 

  14. D. Ceperley and B. J. Alder,Phys. Rev. A 31, 1999 (1985).

    Article  ADS  Google Scholar 

  15. K. E. Schmidt and M. H. Kalos inMonte Carlo Methods in Statistical Physics. Vol. II, K. Binder, ed. (Springer, Berlin, 1984).

    Google Scholar 

  16. K. Frankowski and C. L. Pekeris,Phys. Rev. 146:46 (1966).

    Article  ADS  Google Scholar 

  17. Y. K. Ho,Int. J. Quant. Chem. 20:1077 (1981).

    Article  Google Scholar 

  18. J. Anderson,J. Chem. Phys. 82:2662 (1985).

    Article  ADS  Google Scholar 

  19. I. Shavitt,Int. J. Quant. Chem. (1985).

  20. E. Clementi,J. Chem. Phys. 38:2248 (1963);39:175 (1963).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ceperley, D.M. The statistical error of green's function Monte Carlo. J Stat Phys 43, 815–826 (1986). https://doi.org/10.1007/BF02628307

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02628307

Key words

Navigation