Skip to main content

Decision on the type of remediation technology to adopt in any particular situation is a difficult issue. Biotechnologies are beginning to offer efficient tools and environmental solutions for the cleanup of contaminated sites. An environmentally friendly in-situ technology is phytoremediation. This term covers different processes applicable to heavy metal-contaminated soils: phytostabilisation, phytoimmobilization, phytodegradation, rhizofiltration, phytoextraction. The interactions in soil between plant and microbes are one of the most important factors that influence the technology. The capacity of soil bacteria to utilize 1-aminocyclo-propane-1-carboxylate (ACC) and thus increase root elongation is reviewed. A mathematical model of arsenic accumulation in sunflower plant treated with a plant growth-promoting rhizobacteria (PGPR) Pseudomonas fluorescens biotype F and the possibilities of utilization of biomass from phytoremediation are presented. Further perspectives in that direction are related to the use of natural or introduced PGPR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bagga, D. and Peterson, S., 2001, Phytoremediation of arsenic-contaminated soil as affected by the chelating agent EDTA and different levels of soil pH, Remediation Winter, 77–85.

    Google Scholar 

  • Blaylock, M.J., Salt, D.E., Dushenkov, S., Zakharova, O., Gussman, C., Kapulnik, Y., Ensley, B.D., and Raskin I., 1997, Enhanced accumulation of Pb by Indian mustard by soil-applied chelating agents, Environmental Science Technology, 31: 860–886.

    Article  Google Scholar 

  • Brown, S.L., Chaney, R.L., Angle, J.S., and Baker, A.J.M., 1995, Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescensand metal tolerant Silene vulgarisgrown on sludgeamended soils, Environmental Science and Technology, 29: 1581–1585.

    Article  CAS  Google Scholar 

  • Burd, G.I., Dixon, D.G., and Glick, B.R., 2000, Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Canadian Journal of Microbiology 46(3): 237–245.

    Article  CAS  Google Scholar 

  • Glick, B.R., 2003, Phytoremediation: synergistic use of plants and bacteria to clean up the environment, Biotechnology advances, 21: 383–393.

    Article  CAS  Google Scholar 

  • Glick, B.R., 2005, Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase, FEMS Microbiological Letters, 251: 1–7.

    Article  CAS  Google Scholar 

  • Hetland, M.D., Gallagher, J.R., Daly, D.J., Hassett, D.J., and Heebink, L.V., 2001, Processing of plants used to phytoremediate lead-contaminated sites. pp. 129–136. In: Phy-toremediation, Wetlands, and Sediments, The Sixth International in situ and on-site Bioremediation Symposium, Leeson, A. Foote, E.A., Banks, M.K., Magar, V.S., (eds.), Battelle Press, Columbus, Richland.

    Google Scholar 

  • Honma, M. and Shimomura, T., 1978, Metabolism of 1-aminocyclopropane-1-carboxylic acid, Agricultural Biology Chemistry, 42: 1825–1831.

    CAS  Google Scholar 

  • Huang, J., Chen, J., Berti, W., and Cunningham, S., 1997, Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction, Environmental Science Technology, 31: 800–805.

    Article  CAS  Google Scholar 

  • Kayser, A., Wenger, K., Keller, A., Attinger, W., Felix, H.R., Gupta, S.K., and Schulin, R., 2000, Enhancement of phytoextraction of Zn, Cd, and Cu from calcareous soil: the use of NTA and sulfur amendments, Environmental Science and Technology, 34: 1778–1783.

    Article  CAS  Google Scholar 

  • Khan, A.G., 2005, Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation, Journal Trace Elements Medical Biology, 18: 355–364.

    Article  CAS  Google Scholar 

  • Lasat, M.M., 2000, Phytoextraction of metals from contaminated soil: a review of plant/ soil/metal interaction and assessment of pertinent agronomic issues, Journal Hazardous Substance Research, 2: 1–25.

    Google Scholar 

  • Ma, L., Komar, K., Tu, C., Zhang, W., Cai, Y., and Kennelley, E., 2001, A fern that hyper-accumulates arsenic, Nature, 409: 579.

    Article  CAS  Google Scholar 

  • Marinkova, D., Tsibranska, I., Yotova, L. and Georgieva, N., 2007, An evaluation of kinetic parameters of cadmium and copper biosorption by immobilized cells, Bio-automation, 7: 46–56.

    Google Scholar 

  • Mulligan, C.N., Yong, R.N., and Gibbs, B.F., 2001, Remediation technologies for metal-contaminated soils and groundwater: an evaluation, Engineering Geology, 60: 193–207.

    Article  Google Scholar 

  • Okada, T., Tojo, Y., Tanaka, N., and Matsuto, T., 2007, Recovery of zinc and lead from fly ash from ash-melting and gasification-melting processes of MSW — comparison and applicability of chemical leaching methods, Waste management, 27: 69–80.

    Article  CAS  Google Scholar 

  • Quartacci, M.F., Irtelli, B., Baker, A.J.M., and Navari-Izzo, F., 2007, The use of NTA and EDDS for enhanced phytoextraction of metals from a multiply contaminated soil by Brassica carinata. Chemosphere, 68(10): 1920–1928.

    Article  CAS  Google Scholar 

  • Robinson, B.H., Leblanc, M., Petit, D., Brooks, R.R., Kirkman, J.H., and Gregg, P.E.H., 1998, The potential of Thlaspi caerulescensfor phytoremediation of contaminated soils, Plant and Soil, 203: 47–56.

    Article  CAS  Google Scholar 

  • Robinson, B.H., Mills, T.M., Petit, D., Fung, L.E., Green, S.R., and Clothier, B.E., 2009, Natural induced Cadmium-accumulation in poplar and willow: Implications for phytoremediation. Plant and Soil, 227(1–2): 301–306.

    Google Scholar 

  • Salt, D.E., Blaylock, M., Kumar, N.P.B.A., Dushenkov, V., Ensley, B.D., Chet, I., and Raskin, I., 1995, Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology, 13: 468–474.

    Article  CAS  Google Scholar 

  • Salt, D.E., Smith, R.D., and Raskin, I., 1998, Phytoremediation, Annual Review Plant Physiology Plant Molecular Biology, 49: 643–668.

    Article  CAS  Google Scholar 

  • Shilev, S., Benlloch, M., Dios-Palomares, E., and Sancho, E.D., 2008, Phytoremediation of metal contaminated soils for improving food safety. pp. 225–242. In: Predictive Modelling and Risk Assessment, Costa R. and Kristbergsson, K. (eds.), ISBN-10: 0387335129, Springer, Berlin, Germany.

    Google Scholar 

  • Shilev, S., Naydenov, M., Tahsin, N., Sancho, E.D., Benlloch, M., Vancheva, V., Sapundjieva, K., and Kuzmanova, J., 2007, Effect of easily biodegradable amendments on heavy metals accumulation in technical crops – a field trial. Journal of Environmental Engineering and Landscape Management, 15(4), 237–242.

    Google Scholar 

  • Shilev, S., Ruso, J., Puig, A., Benlloch, M., Jorrin, J., and Sancho, E.D., 2001, Rhizospheric bacteria promote sunflower (Helianthus annuusL.) plant growth and tolerance to heavy metals, Minerva Biotecnologica, 13: 37–39.

    Google Scholar 

  • Vassilev, A., Schwitzguébel, J.-P., Thewys, T., van der Lelie, D., and Vangrosveld, J., 2004, The use of plants for remediation of metal-contaminated soils, The Scientific World Journal, 4: 9–34.

    CAS  Google Scholar 

  • Wenzel, W.W., Adriano D.C., Salt D., and Smith R., 1999, Phytoremediation: a plant-microbe-based remediation system, pp. 457–508. In: Bioremediation of Contaminated Soils, Adriano D.C., Bollang J.-M., Frankenberger W.T., Jr, and Slims R.C. (eds.), American Society of Agronomy, Madison, WI.

    Google Scholar 

  • Zayed, A, Gowthaman, S., and Terry, N., 1998a, Phytoaccumulation of trace elements by wetland plants: I. Duckweed, Journal of Environmental Quality, 27: 715–721.

    Article  CAS  Google Scholar 

  • Zayed, A.M., Lytle, C.M., and Terry, N., 1998b, Accumulation and volatilization of different chemical species of selenium by plants, Planta, 206: 284–292.

    Article  CAS  Google Scholar 

  • Zhao, F.J., Lombi, E., Breedon, T., and McGrath, S.P., 2000, Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri, Plant Cell Environmental, 23: 507.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this paper

Cite this paper

Shilev, S., Kuzmanova, I., Sancho, E. (2009). Phytotechnologies: how plants and bacteria work together. In: Baveye, P.C., Laba, M., Mysiak, J. (eds) Uncertainties in Environmental Modelling and Consequences for Policy Making. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2636-1_17

Download citation

Publish with us

Policies and ethics