Skip to main content

Measurement and Characterization of Aerosol Nanoparticles

  • Chapter
  • First Online:
Nanoparticles in medicine and environment

Abstract

Aerosol nanoparticles are abundant in natural and man-made environment. Air quality studies and health impact of particles, in particular of nanoparticles, are being conducted with an increasing level of interest in the academic and also non-academic community. The potential risks to the health and environment of engineered nanoparticles and consequently nanomaterials become increasingly the focus of general attention in recent years (Pui and Chen 1997; Royal Society and Royal Academy of Engineering 2004; Maynard and Pui 2007; Gazso et al. 2007). However, so far no standard procedures for measurement of aerosol nanoparticles and their properties were attempted to invoke. Moreover, there is even no standard definition regarding nanoparticles, not to mention aerosol nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allmaier G, Laschober C, Szymanski WW, Nano ES (2008) GEMMA and PDMA, new tools for the analysis of nanobioparticles – protein complexes, lipoparticles and viruses. J Am Soc Mass Spectrom 19(8):1062–1068

    Article  CAS  PubMed  Google Scholar 

  • Alonso M, Martin MI, Alguacil FJ (2006) The measurement of charging efficiencies and losses of aerosol nanoparticles in a corona charger. J Electrostat 64:203–214

    Article  Google Scholar 

  • Ankilov A, Baklanov A, Colhoun M, Enderle KH, Filipovicova D, Julanov A, Lushnikov A, Vrtala A, Mavliev R, McGovern F, Mirme A, OConnor TC, Podzimek J, Preining O, Reischl G, Rudolf R, Sem G, Szymanski WW, Tamm E, Wagner P, Zagaynov A (2002) Particle size dependent response of aerosol counters. Atmos Res. 62:209–237

    Article  CAS  Google Scholar 

  • Aranchuk LE, Chuvatin AS, Larour J (2004) Compact submicrosecond, high current generator for wire explosion experiments. Rev Sci Instrum 75:69–75

    Article  CAS  Google Scholar 

  • Bacher G, Szymanski WW, Kaufman SL, Zöllner P, Blaas D, Allmaier G (2001) Charge reduced nano-electrospray combined with differential mobility analysis of peptides, proteins, glycoproteins, noncovalent protein complexes and viruses. J Mass Spectrom 36:1038–1052

    Article  CAS  PubMed  Google Scholar 

  • Biskos G, Reavell K, Collings N (2005a) Electrostatic characterization of corona-wire aerosol charges. J Electrostat 63:69–82

    Article  Google Scholar 

  • Biskos G, Reavell K, Collings N (2005b) Description and theoretical analysis of a differential mobility spectrometer. Aerosol Sci Technol 9:527–541

    Google Scholar 

  • Biskos G, Reavell K, Collings N (2005c) Unipolar diffusion charging of aerosol particles in the transition regime. J Aerosol Sci 36:247–265

    Article  CAS  Google Scholar 

  • Brown DM, Wilson MR, MacNee W, Stone V, Donaldson K (2001) Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol 175:191–199

    Article  CAS  PubMed  Google Scholar 

  • Chaolong Q, Chen DR, Pui DYH (2007) Experimental study of a new corona-based unipolar aerosol charger. J Aerosol Sci 38:775–792

    Article  Google Scholar 

  • Chen DR, Pui DYH (1997) Numerical modeling of the performance of differential mobility analyzers for nanometer aerosol measurement. J Aerosol Sci 28:985–1004

    Article  CAS  Google Scholar 

  • Chen DR, Pui DYH (1999) A high efficiency, high throughput unipolar aerosol charger for nanoparticles. J Nanoparticle Res 1:115–126

    Article  CAS  Google Scholar 

  • Collins DR, Nenes A, Flagan RC, Seinfeld JH (2000) The scanning flow DMA. J Aerosol Sci 31:1129–1144

    Article  CAS  Google Scholar 

  • De la Mora JF, De Juan L, Eichler T, Rosell J (1998) Differential mobility analysis of molecular ions and nanometer particles. TRAC 17:328–339

    Google Scholar 

  • Dusek U, Frank GP, Hildebrandt L, Curtius J, Schneider J, Walter S, Chand D, Drewnick F, Hings S, Jung D, Borrmann S, Andreae MO (2006) Size matters more than chemistry for cloud nucleating ability of aerosol particles. Science 312:1375–1378

    Article  CAS  PubMed  Google Scholar 

  • Ehara K, Hagwood C, Coakley KJ (1996) Novel method to classify aerosol particles according to their mass-to-charge ratio – aerosol particle mass analyser. J Aerosol Sci 27:217–234

    Article  CAS  Google Scholar 

  • Erikson HA (1922) On the nature of the negative and positive ions in air, oxygen and nitrogen. Phys Rev 20:117–126

    Article  CAS  Google Scholar 

  • Faraday M (1857) The Bakerian Lecture – experimental relations of gold (and other metals) to light. Philos Trans R Soc Lond 145:181

    Google Scholar 

  • Gazso A, Gressler S, Schimer F (eds) (2007) Nano – Chancen und Risken aktueller Technologien, Springer, Vienna, New York

    Google Scholar 

  • Goldman M, Goldmann A, Sigmond RS (1985) The corona discharge, its properties and specific uses. Pure Appl Chem 57(9):1353–1362

    Article  CAS  Google Scholar 

  • Gras JL, Podzimek J, O’Connor TC, Enderle KH (2002) Nolan–Pollak type CN counters in the Vienna aerosol workshop. Atmos Res 62:239–254

    Article  Google Scholar 

  • Harris WA, Reilly PTA, Whitten WB (2005) MALDI of individual biomolecule-containing airborne particles in an ion trap mass spectrometer. Anal Chem 77(13):4042–4050

    Article  CAS  PubMed  Google Scholar 

  • ICRP – International Commission on Radiological Protection (1994) Human Respiratory Tract Model for Radiological Protection, ICRP publication 66, Pergamon, Elmsford, NY

    Google Scholar 

  • Jayne JT, Leard DC, Zhang X, Davidovits P, Smith KA, Kolb CE, Worsnop DR (2000) Development of an aerosol mass spectrometer for size and composition analysis of submicron particles. Aerosol Sci Technol 33:49–70

    Article  CAS  Google Scholar 

  • Kinney PD, Pui DYH, Mulholand GW, Bryer NP (1991) Use of the elecftrostatic classification method to 0.1 tm SRM particles – a feasibiiiy study. J Res Natl Inst Stand Technol 96:147

    CAS  Google Scholar 

  • Knutson EO, Whitby KT (1975) Aerosol classification by electric mobility: apparatus, theory and applications. J Aerosol Sci 6:443–451

    Article  Google Scholar 

  • Kotov YA (2003) Electric explosion of wires as a method for preparation of nanopowders. J Nanoparticle Res 5:539–550

    Article  Google Scholar 

  • Laschober C, Kaufman SL, Reischl G, Allmaier G, Szymanski WW (2006) Comparison between an unipolar corona charger and a polonium-based bipolar neutralizer for the analysis of nanosized particles and biopolymers. J Nanosci Nanotechnol 6:1474–1481

    Article  CAS  PubMed  Google Scholar 

  • Laschober C, Kaddis CS, Reischl GP, Loo JA, Allmaier G, Szymanski WW (2007) Comparison of various nano-differential mobility analysers (nDMAs) applying globular proteins. J Exp Nanoscience 2(04):291–301

    Article  CAS  Google Scholar 

  • Laschober C, Wruss J, Blaas D, Szymanski WW, Allmaier G (2008) Gas-phase electrophoretic molecular mobility analysis of size and stoichiometry of complexes of common cold virus with antibody and soluble receptor molecules. Anal Chem 80(6):2261–2264

    Article  CAS  PubMed  Google Scholar 

  • Liu BYH, Pui DYH (1975) On the performance of the electrical aerosol analyzer. J Aerosol Sci 6:249–264

    Article  Google Scholar 

  • Liu BYH, McKenzie RL, Agarwal JK, Jaenicke R, Pohl FG, Preining O, Reischl G, Szymanski WW, Wagner PE (1982) Intercomparison of different “absolute” instruments for measurement of aerosol number concentration. J Aerosol Sci 13:429–450

    Article  CAS  Google Scholar 

  • Marijnissen J, Scarlett B, Verheijen P (1988) Proposed on-line aerosol analysis combining size determination, laser-induced fragmentation and time-of-flight mass spectroscopy. J Aerosol Sci 19(7):1307–1310

    Article  CAS  Google Scholar 

  • Maynard AD (2006) Nanotechnology: managing the risks. Nanotoday 1:22–33

    Google Scholar 

  • Maynard AD, Kumpel ED (2005) Airborne nanostructured particles and occupational health. J Nanoparticle Res 7:587–614

    Article  CAS  Google Scholar 

  • Maynard AD, Pui DYH (eds) (2007) Nanotechnology and occupational health. Springer, Dordrecht, The Netherlands

    Google Scholar 

  • McMurry PH, Wang X, Park K, Ehara K (2002) The relationship between mass and mobility for atmospheric particles: a new technique for measuring particle density. Aerosol Sci Technol 36:227–238

    Article  CAS  Google Scholar 

  • McMurry PH, Private communication 2008

    Google Scholar 

  • Mesbah B, Fitzgerald B, Hopke PK, Pourprix M (1997) A new technique to measure the mobility size of ultrafine radioactive particles. Aerosol Sci Technol 27:381–393

    Article  CAS  Google Scholar 

  • Müller R, Laschober C, Szymanski WW, Allmaier G (2007) Determination of molecular weight, particle size and density of high number generation PAMAM dendrimers using MALDI-TOF-MS and nES-GEMMA. Macromolecules 40:5599–5605

    Article  Google Scholar 

  • NARSTO (North American Research Strategy for Tropospheric Ozone) (2007) Aerosol Workshops, Crystal City, Virginia, USA, Webpage: http://www.narsto.org/

  • Nelsen RW, Dogruel D, Williams P (1995) Detection of human IgM at m/z .apprx. 1 MDa. Rapid Comm Mass Spectr 9:625

    Google Scholar 

  • Noble CA, Prather KA (1998) Aerosol time-of-flight mass spectrometry: a new method for performing real-time characterization of aerosol particles. Appl Occup Environ Hygiene 13:439–443

    CAS  Google Scholar 

  • Oberdörster G (2000) Pulmonary effects of inhaled ultrafine particle. Int Arch Occup Environ Health 74:1–8

    Article  Google Scholar 

  • Park K, Feng C, Kittelson DB, McMurry PH (2003) Relationship between particle mass and mobility for diesel exhaust particles. Environ Sci Technol 37:577–583

    Article  CAS  PubMed  Google Scholar 

  • Porter DW, Castranova V, Robinson VA (1999) Acute inflammatory reaction in rats after intratracheal instillation of material collected from a nylon flocking plant. J Toxicol Environ Health A 14:25–45

    Google Scholar 

  • Preining O (1998) The physical nature of very, very small particles and its impact on their behaviour. J Aerosol Sci 29:481–495

    Article  CAS  Google Scholar 

  • Pui DYH, Chen DR (1997) Nanometer particles: a new frontier for multidisciplinary research. J Aerosol Sci 28:539–544

    Article  CAS  Google Scholar 

  • Reischl GP (2008) private communication

    Google Scholar 

  • Reischl GP, Makela JM, Necid J (1997) Performance of Vienna type differential mobility analyzer at 1.2–20 nanometer. Aerosol Sci Technol 27:651–672

    Article  CAS  Google Scholar 

  • Rohmann H (1923) Methode zur Messung der Größe von Schwebeteilchen. Zeitschrift für Physik 17:253–265

    Article  CAS  Google Scholar 

  • Royal Society and Royal Academy of Engineering (2004) Final Report on Nanotechnology and Nanoscience – Website http://www.nanotec.org.uk

  • Schneider J, Borrmann S, Wollny AG, Bläsner M, Mihalopoulos N, Oikonomou K, Sciare J, Teller A, Levin Z, Worsnop DR (2004) Online mass spectrometric aerosol measurements during the MINOS campaign. Atmos Chem Phys 4:65–80

    Article  CAS  Google Scholar 

  • Tammet H (1995) Size and mobility of nanometer particles, clusters and ions. J Aerosol Sci 26:459–475

    Article  CAS  Google Scholar 

  • Tomalia DA, Frechet JMJ (2002) Discovery of dendrimers and dendritic polymers: a brief historical perspective. J Polymer Sci A 40:2719–2728

    Article  CAS  Google Scholar 

  • Vincent JH (2005) Health-related aerosol measurement: a review of existing sampling criteria and proposals for new ones. J Environ Monit 7:1037–1053

    Article  CAS  PubMed  Google Scholar 

  • Vivas MM, Hontanon E, Schmidt-Ott A (2008) Reducing multiple charging of submicron aerosols in a corona diffusion charger. Aerosol Sci Technol 42:97–109

    Article  CAS  Google Scholar 

  • Winklmayr W, Reischl GP, Lindner AO, Berner A (1991) A new electromobility spectrometer for the measurement of aerosol size distribution in the size range from 1 to 1000 nm. J Aerosol Sci 22:289–296

    Article  CAS  Google Scholar 

  • Wittmaack K (2007) In search of the most relevant parameter for quantifying lung inflammatory response to nanoparticle exposure: particle number, surface area, or what? Environ Health Perspect 115:187–194

    Article  CAS  PubMed  Google Scholar 

  • WUFA 1979 – Working Group on Ultrafine Aerosol, Vienna 1979, Results of the WUFA-Workshop, Vienna, May 20–June 15, 1979, Liu BYH, Pui DYH, McKenzie RL, Agarwal JK, Jaenicke R, Pohl FG, Preining O, Reischl G, Szymanski WW, Wagner PE. J Aerosol Sci 1980, 11:261-263

    Google Scholar 

  • Zeleny J (1929) The distribution of mobilities of ions in moist air. Phy Rev 34:310–334

    Article  CAS  Google Scholar 

  • Zhang SH, Flagan RC (1996) Resolution of the radial differential mobility analyzer for ultrafine particles. J Aerosol Sci 27:1179–1200

    Article  CAS  Google Scholar 

  • Zsigmondy R (1905) Zur Erkenntnis der Kolloide – Ueber die irreversiblen Hydrosole und Ultramikroskopie, G. Fischer, Jena

    Google Scholar 

Download references

Acknowlegements

The support of the Austrian Science Foundation (FWF) grant P16185 (to W.W.S) and P15008 (to G.A.) is here gratefully acknowledged. Authors would like express their thanks to Nikolaus Fölker for his help with the graphical layout.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wladyslaw W. Szymanski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Szymanski, W.W., Allmaier, G. (2010). Measurement and Characterization of Aerosol Nanoparticles. In: Marijnissen, J., Gradon, L. (eds) Nanoparticles in medicine and environment. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2632-3_6

Download citation

Publish with us

Policies and ethics