Skip to main content

Genetically Modified Insects as a Tool for Biorational Control

  • Chapter
  • First Online:
Biorational Control of Arthropod Pests

Abstract

Since the dawn of agriculture, pests and plant diseases have plagued crop production. The impact of pests is perhaps no better exemplified than by the desert locust, Schistocerca gregaria, whose image appears on stone monuments in Egypt dating around 2400 BC (Baron 1972). Similar records of plagues by other locusts appear in very early Chinese history as well (Lima 2007). The principal feature of locust outbreaks is their unpredictable nature, much like floods, drought, hurricanes and other “natural” disasters. Not withstanding the Green Revolution in crop breeding of the 1960s, the latest breakthroughs in the history of agriculture are pesticides (ca 1940) and biotechnology (ca 1975). The former not only led to an increase in crop yield by reducing pre-harvest losses to pests, but allowed invasions to be treated and controlled. Indeed, the true value of neurotoxic insecticides is their ability to stop an insect or mite infestation immediately. This allows the grower to complete a production cycle and harvest a crop at a predictable time with a predictable yield. A dependable harvest also allows the commodity industries and government agencies to fund research and buys time for development of alternative methods of control that are more specific with fewer side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aksoy S, O’Neill SL, Maudlin I, Dale C, Robinson, AS (2001) Prospects for control of African trypanosomiasis by tsetse vector manipulation. Trends Parasitol 17: 29–35

    Article  CAS  PubMed  Google Scholar 

  • Alphey LS. (2007) Engineering insects for the sterile insect technique. In: Vreysen MJB, Robinson AS, Hendrichs J (eds) Area-Wide Control of Insect Pests. Springer-Verlag, Berlin, pp. 51–60

    Chapter  Google Scholar 

  • Anonymous (2004) Bugs in the system? Issues in the science and regulation of genetically modified insects. www.pewagbiotech.org, 109 pp

  • Anonymous (2008) Use of Genetically engineered fruit fly and pink bollworm in PPHIS plant pest control programs. Draft Environmental Impact Statement – May 2008. USDA-APHIS

    Google Scholar 

  • Ashburner M, Hoy MA, Peloquin JJ (1998) Prospects for the genetic transformation of arthropods. Insect Mol Biol 7: 201–213

    Article  CAS  PubMed  Google Scholar 

  • Baldo L, Hotopp D, Jolley JC, Bordenstein KA, Biber SR, Choudhury SA, Hayashi RR, Maiden C, Tettelin MC, Werren JH (2006) A multilocus sequence typing system for the endosymbiont Wolbachia. Appl Environ Microbiol 72: 7098–7110

    Article  CAS  PubMed  Google Scholar 

  • Bandi C, Anderson TJC, Genchi C, Blaxter ML (1998) Phylogeny of Wolbachia in filarial nematodes. Proc R Soc Lond B Biol Sci 265: 2407–2413

    Article  CAS  Google Scholar 

  • Baron S (1972) The Desert Locust. Charles Scribner’s Sons, New York, NY

    Google Scholar 

  • Bartlett AC, Lewis LJ (1973) Pink bollworm: chromosomal damage and reproduction after gamma irradiation of larvae. J Econ Entomol 66: 731–733

    Google Scholar 

  • Beard CB, O’Neill SL, Tesh RB, Richards FF, Aksoy S (1993) Modification of arthropod vector competence via symbiotic bacteria. Parasitol Today 9: 179–183

    Article  CAS  PubMed  Google Scholar 

  • Beeman R, Friesen K, Denell R (1992) Maternal-effect selfish genes in flour beetles. Science 256: 89

    Article  CAS  PubMed  Google Scholar 

  • Bordenstein SR, Marshall ML, Fry AJ, Kim U, Wernegreen JJ (2006) The tripartite associations between bacteriophage, Wolbachia, and arthropods. PLoS Pathogens 2: e43

    Article  PubMed  Google Scholar 

  • Bordenstein S, Rosengaus RB (2005) Discovery of a novel Wolbachia supergroup in isoptera. Curr Microbiol 51: 393–398

    Article  CAS  PubMed  Google Scholar 

  • Bourtzis K, Braig HR, Karr TL (2003) Cytoplasmic incompatibility. In: Bourtzis K, Miller T (eds) Insect Symbiosis. CRC Press, Boca Raton, FL, pp. 217–246

    Chapter  Google Scholar 

  • Bourtzis K, Miller T (eds) (2003) Insect Symbiosis. CRC Press, Boca Raton, FL

    Google Scholar 

  • Bourtzis K, Miller T, (eds) (2006) Insect Symbiosis 2. CRC Press, Boca Raton, FL

    Google Scholar 

  • Bourtzis K, O’Neill SL (1998) Wolbachia infections and their influence on arthropod reproduction. Bioscience 48: 287–293

    Article  Google Scholar 

  • Bourtzis K, Robinson AS (2006) Insect pest control using Wolbachia and /or radiation. In: Bourtzis K, Miller T (eds) Insect Symbiosis, Volume 2, Taylor & Francis, Boca Raton, FL, pp. 225–246

    Chapter  Google Scholar 

  • Boyle L, O’Neill SL, Robertson HM, Karr TL (1993) Inter- and intraspecific horizontal transfer of Wolbachia in Drosophila. Science 260: 1796–1799

    Article  CAS  PubMed  Google Scholar 

  • Braig H, Yan G (2001) The spread of genetic constructs in natural insect populations. In: Letourneau DK, Burrows BE (eds) Genetically Engineered Organisms: Assessing Environmental and Human Health Effects. CRC Press, Boca Raton, FL, pp. 251–314

    Google Scholar 

  • Breeuwer JAJ, Stouthamer R, Barns SM, Pelletier DA, Weisburg WG, Werren JH (1992) Phylogeny of cytoplasmic incompatibility microorganisms in the parasitoid wasp genus Nasonia (Hymenoptera: Pteromalidae) based on 16S ribosomal DNA sequences. Insect Mol Biol 1: 25–36

    Article  CAS  PubMed  Google Scholar 

  • Breeuwer JAJ, Werren JH (1993) Cytoplasmic incompatibility and bacterial density in Nasonia vitripennis. Genetics 135: 565–574

    CAS  PubMed  Google Scholar 

  • Bucchini L, Goldman LR (2002) StarLink corn: A risk analysis. Environmental Health Perspectives 110: 5–13

    Article  CAS  PubMed  Google Scholar 

  • Burt A (2003) Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc R Soc Lond B Biol Sci 270: 921–928

    Article  CAS  Google Scholar 

  • Capurro M, Coleman J, Beerntsen BT, Myles KM, Olson KE, Rocha E, Krettli AU, James AA (2000) Virus-expressed, recombinant single-chain antibody blocks sporozoite infection of salivary glands in Plasmodium gallinaceum-infected Aedes aegypti. Am J Trop Med Hyg 62: 504–512

    Google Scholar 

  • Carson R (1962) Silent Spring, Fawcett Publications, Greenwich, CT

    Google Scholar 

  • Champion de Crespigny FE, Wedell N (2006) Wolbachia infection reduces sperm competitive ability in an insect. Proc R Soc Lond B Biol Sci 273: 1455–1458

    Article  Google Scholar 

  • Chen CH, Huang H, Ward CM, Su JT, Schaeffer LV, Guo M, Hay BA (2007) A synthetic maternal-effect selfish genetic element drives population replacement in Drosophila. Science 316: 597–600

    Article  CAS  PubMed  Google Scholar 

  • Curtis C, Coleman P, Kelly D, Campbell-Lendrum D (2006). Advantages and limitations of transgenic vector control: sterile males vs gene drivers, In: Boëte C (ed) Genetically Modified Mosquitoes for Malaria Control, Landes Bioscience, Austin, TX

    Google Scholar 

  • Davis S, Bax N, Grewe P (2001) Engineered underdominance allows efficient and economic introgression of traits into pest populations. J Theor Biol 212: 83–98

    Article  CAS  PubMed  Google Scholar 

  • Dimopoulos G (2003) Insect immunity and its implication in mosquito-malaria interactions. Cell Microbiol 5: 3–14

    Article  CAS  PubMed  Google Scholar 

  • Dixon B (2008) Questionable experiments. Microbe 3: 216–217

    Google Scholar 

  • Fitch M, Manshardt R, Gonsalves D, Slightom J, Sanford J (1992) Virus resistant papaya plants derived from tissues bombarded with the coat protein gene of papaya ringspot virus. Biotechnology 10: 1466–1472

    Article  CAS  Google Scholar 

  • Franz G (2002) Recombination between homologous autosomes in medfly (Ceratitis capitata) males: type-1 recombination and the implications for the stability of genetic sexing strains. Genetica 116: 73–84

    Article  CAS  PubMed  Google Scholar 

  • Franz AW, Sanchez VI, Adelman ZN, Blair CD, Beaty BJ, James AA, Olson KE (2006) Engineering RNA interference-based resistance to dengue virus type 2 in genetically modified Aedes aegypti. Proc Natl Acad Sci USA 103: 4198–4203

    Article  CAS  PubMed  Google Scholar 

  • Fryxell K, Miller T (1995) Autocidal biological control: a general strategy for insect control based on genetic transformation with a highly conserved gene. J Econ Entomol 88: 1221–1232

    Google Scholar 

  • Fu G, Condon KC, Epton MJ, Gong P, Jin L, Condon GC, Morrison NI, Dafa’alla TH, Alphey L (2007) Female-specific insect lethality engineered using alternative splicing. Nature Biotechnology 25: 353–357

    Article  CAS  PubMed  Google Scholar 

  • Gong P, Epton MJ, Fu G, Scaife S, Hiscox A, Condon KC, Condon GC, Morrison NI, Kelly DW, Dafa’alla T, Coleman PG, Alphey L (2005) A dominant lethal genetic system for autocidal control of the Mediterranean fruitfly. Nat Biotech 23: 453–456

    Article  CAS  Google Scholar 

  • Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA 89: 5547–5551

    Article  CAS  PubMed  Google Scholar 

  • Gould F, Schliekelman P (2004) Population genetics of autocidal control and strain replacement. A Rev Entomol 49: 193–217

    Article  CAS  Google Scholar 

  • Handler A, Harrell R (2001) Polyubiquitin-regulated DsRed marker for transgenic insects. BioTechniques 31: 820–828

    CAS  PubMed  Google Scholar 

  • Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH (2008) How many species are infected with Wolbachia? – A statistical analysis of current data. FEMS Microbiol Lett 281: 215–20

    Article  CAS  PubMed  Google Scholar 

  • Hoffman AA, Turelli M (1997) Cytoplasmic incompatibility in insects. In: O’Neill SL, Hoffmann AA, Werren JH (eds) Influential Passengers: Inherited Microorganisms and Arthropod Reproduction. Oxford University Press, NY, pp. 42–80

    Google Scholar 

  • Horn C, Schmid B, Pogoda F, Wimmer E (2002) Fluorescent transformation markers for insect transgenesis. Insect Biochem Mol Biol 32: 1221–1235

    Article  CAS  PubMed  Google Scholar 

  • Ito J, Ghosh A, Moreira L, Wimmer E, Jacobs-Lorena M (2002) Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite. Nature 417: 452–455

    Article  CAS  PubMed  Google Scholar 

  • Jamnongluk W, Kittayapong P, Baisley KJ, O’Neill SL (2000) Wolbachia infection and expression of cytoplasmic incompatibility in Armigeres subalbatus (Diptera: Culicidae). J Med Entomol 37: 53–57

    Article  Google Scholar 

  • Jeyaprakash A, Hoy MA (2000) Long PCR improves Wolbachia DNA amplification: wsp sequences found in 76% of 63 arthropod species. Insect Mol Biol 9: 393–405

    Article  CAS  PubMed  Google Scholar 

  • Kanginakudru S, Royer C, Edupalli SV, Jalabert A, Mauchamp B, Chandrashekaraiah, Prasad SV, Chavancy G, Couble P, Nagaraju J (2007) Targeting ie-1 gene by RNAi induces baculoviral resistance in lepidopteran cell lines and in the transgenic silkworms. Insect Mol Biol 16: 635–644

    Article  CAS  PubMed  Google Scholar 

  • Karr TL, Yang W, Feder ME (1998) Overcoming cytoplasmic incompatibility in Drosophila. Proc R Soc Lond B Biol Sci 265: 391–395

    Article  CAS  Google Scholar 

  • Kittayapong P, Mongkalangoon P, Baimai V, O’Neill SL (2002) Host age effect and expression of cytoplasmic incompatibility in field populations of Wolbachia-superinfected Aedes albopictus. Heredity 88: 270–274

    Article  CAS  PubMed  Google Scholar 

  • Klassen W, Knipling EF, McGuire Jr JU (1970) The potential for insect –population suppression by dominant conditional lethal traits. Ann Entomol Soc Am 48: 459–462

    Google Scholar 

  • Lima M (2007) Locust plagues, climate variation, and the rhythms of nature. Proc Natl Acad Sci USA 104: 15972–15973

    Article  CAS  PubMed  Google Scholar 

  • Lo N, Casiraghi M, Salati E, Bazzocchi C, Bandi C (2002) How many Wolbachia supergroups exist? Mol Biol Evol 19: 341–346

    CAS  PubMed  Google Scholar 

  • MacDiarmid R (2007) Genetically modified crop plants: science versus society? – A perspective. Australasian Plant Pathol 36: 516–519

    Article  Google Scholar 

  • Matz MV, Fradkov AF, Labas YA, Savitsky AP, Zaraisky AG, Markelov ML, Lukyanov SA (1999) Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 17: 969–973

    Article  CAS  PubMed  Google Scholar 

  • Menn JJ, Hall FR (1999) Biopesticides, present status and future prospects. In: Hall FR, Menn JJ (eds) Biopesticides Use and Delivery. Humana Press, Totowa, NJ, pp. 1–10

    Google Scholar 

  • Miller E, Staten RT, Jones E, Pozzi J (1984) Effects of 20 krad of gamma irradiation on reproduction of pink bollworm (Lepidoptera: Gelechiidae) and their F1 progeny: potential impact on the identification of trap catches. J Econ Entomol 77: 304–307

    Google Scholar 

  • Miller TA (2004) Rachel Carson and the adaptation of biotechnology to crop protection. Am Entomol 50: 194–198

    Google Scholar 

  • Miller TA, Lauzon C, Lampe D, Durvasula R, Matthews S (2006) Paratransgenesis applied to control insect-transmitted plant pathogens: the Pierce’s disease case. In: Bourtzis K, Miller TA (eds) Insect Symbiosis, Volume 2. Taylor & Francis, Boca Raton, FL, pp. 247–263

    Chapter  Google Scholar 

  • Miller TA, Lauzon CR, Lampe DJ (2008) Technological advances to enhance agricultural pest management. In: Aksoy S (ed) Transgenesis and the Management of Vector-Borne Disease. Landes Bioscience and Springer Science, pp. 141–150

    Google Scholar 

  • Min KT, Benzer S (1997) Wolbachia, normally symbiont of Drosophila, can be virulent, causing degeneration and death. Proc Natl Acad Sci USA 94: 10792–10796

    Article  CAS  PubMed  Google Scholar 

  • McFadyen REC (1998) Biological control of weeds. A Rev Entomol 43: 369–393

    Article  CAS  Google Scholar 

  • Moreira LA, Ito J, Ghosh A, Devenport M, Zieler H, Abraham EG, Crisanti A, Nolan T, Catteruccia F, Jacobs-Lorena M (2002) Bee venom phospholipase inhibits malaria parasite development in transgenic mosquitoes. J Biol Chem 277: 40839–40843

    Article  CAS  PubMed  Google Scholar 

  • Nene V, Wortman JR, Lawson D, Haas B, Kodira C, Tu ZJ, Loftus B, Xi Z, Megy K, Grabherr M, Ren Q, Zdobnov EM, Lobo NF, Campbell KS, Brown SE, Bonaldo MF, Zhu J, Sinkins SP, Hogenkamp DG, Amedeo P, Arensburger P, Atkinson PW, Bidwell S, Biedler J, Birney E, Bruggner RV, Costas J, Coy MR, Crabtree J, Crawford M, Debruyn B, Decaprio D, Eiglmeier K, Eisenstadt E, El-Dorry H, Gelbart WM, Gomes SL, Hammond M, Hannick LI, Hogan JR, Holmes MH, Jaffe D, Johnston JS, Kennedy RC, Koo H, Kravitz S, Kriventseva EV, Kulp D, Labutti K, Lee E, Li S, Lovin DD, Mao C, Mauceli E, Menck CF, Miller JR, Montgomery P, Mori A, Nascimento AL, Naveira HF, Nusbaum C, O’Leary S, Orvis J, Pertea M, Quesneville H, Reidenbach KR, Rogers YH, Roth CW, Schneider JR, Schatz M, Shumway M, Stanke M, Stinson, EO, Tubio JM, Vanzee JP, Verjovski-Almeida S, Werner D, White O, Wyder S, Zeng Q, Zhao Q, Zhao Y, Hill CA, Raikhel AS, Soares MB, Knudson DL, Lee NH, Galagan J, Salzberg SL, Paulsen IT, Dimopoulos G, Collins FH, Birren B, Fraser-Liggett CM, Severson DW (2007) Genome sequence of Aedes aegypti, a major arbovirus vector. Science 315: 1718–1723

    Article  Google Scholar 

  • O’Neill SL, Giordano R, Colbert AME, Karr TL, Robertson HM (1992) 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci USA 89: 2699–2702

    Article  PubMed  Google Scholar 

  • Paraskevopoulos C, Bordenstein SR, Wernegreen J, Werren JH, Bourtzis K (2006) Towards a Wolbachia multilocus sequence typing system: discrimination of Wolbachia strains present in Drosophila species. Curr Microbiol 53: 388–395

    Article  CAS  PubMed  Google Scholar 

  • Phuc HK, Andreasen MH, Burton RS, Vass C, Epton MJ, Pape G, Fu G, Condon KC, Scaife S, Donnelly CA, Coleman PG, White-Cooper H, Alphey L (2007) Late-acting dominant lethal genetic systems and mosquito control. BMC Biol 5: 11

    Article  PubMed  Google Scholar 

  • Pimentel D, Acquay H, Biltonen M, Rice P, Silva M, Nelson J, Lipner V, Giordano S, Horowitz A, D’Amore M (1993) Assessment of environmental and economic impacts of pesticide use. In: Pimentel D, Lehman H (eds) The Pesticide Question: Environment, Economics, and Ethics. Routledge, Chapman & Hall, New York, NY, pp. 47–84

    Google Scholar 

  • Poinsot D, Bourtzis K, Markakis G, Savakis C, Merçot H (1998) Wolbachia transfer from Drosophila melanogaster to D. simulans: host effect and cytoplasmic incompatibility relationships. Genetics 150: 227–237

    CAS  PubMed  Google Scholar 

  • Rendón P, McInnis D, Lance D, Stewart J (2004) Medfly (Diptera: Tephritidae) genetic sexing: large-scale field comparison of males-only and bisexual sterile fly releases in Guatemala. J Econ Entomol 97: 1547–1553

    Article  PubMed  Google Scholar 

  • Reynolds KT, Hoffmann AA (2002) Male age and the weak expression or non-expression of cytoplasmic incompatibility in Drosophila strains infected by maternally-transmitted Wolbachia. Genet Res 80: 79–87

    Article  PubMed  Google Scholar 

  • Reynolds KT, Thomson LJ, Hoffmann AA (2003) The effects of host age, host nuclear background and temperature on phenotypic effects of the virulent Wolbachia strain popcorn in Drosophila melanogaster. Genetics 164: 1027–1034

    PubMed  Google Scholar 

  • Riegler M, Charlat S, Stauffer C, Mercot H (2004) Wolbachia transfer from Rhagoletis cerasi to Drosophila simulans: investigating the outcomes of host-symbiont co-evolution. Appl Environ Microbiol 70: 273–279

    Article  CAS  PubMed  Google Scholar 

  • Riegler M, Stauffer C (2002) Wolbachia infections and superinfections in cytoplasmically incompatible populations of the European cherry fruit fly Rhagoletis cerasi (Diptera, Tephritidae). Mol Ecol 11: 2425–2434

    Article  CAS  PubMed  Google Scholar 

  • Rousset F, Bouchon D, Pintureau B, Juchault P, Solignac M (1992) Wolbachia endosymbionts responsible for various alterations of sexuality in arthropods. Proc R Soc Lond B Biol Sci 250: 91–98

    Article  CAS  Google Scholar 

  • Rowley SM, Raven RJ, McGraw EA (2004) Wolbachia pipientis in Australian spiders. Curr Microbiol 49: 208–214

    Article  CAS  PubMed  Google Scholar 

  • Salghetti S, Caudy A, Chenoweth J, Tansey W (2001) Regulation of transcriptional activation domain function by ubiquitin. Science 293: 1651–1653

    Article  CAS  PubMed  Google Scholar 

  • Schliekelman P, Gould F (2000) Pest control by the introduction of a conditional lethal trait on multiple loci: potential, limitations, and optimal strategies. J Econ Entomol 93: 1543–1565

    Article  CAS  PubMed  Google Scholar 

  • Shagin DA, Barsova EV, Yanushevich YG, Fradkov AF, Lukyanov KA, Labas YA, Ugalde JA, Meyer A, Nunes JM, Widder EA, Lukyanov SA, Matz MV (2004) GFP-like proteins as ubiquitous Metazoan superfamily: evolution of functional features and structural complexity. Mol Biol Evol 21: 841–850

    Article  CAS  PubMed  Google Scholar 

  • Shin S, Kokoza V, Raikhel A (2003) Transgenesis and reverse genetics of mosquito innate immunity. J Exp Biol 206: 3835–3843

    Article  CAS  PubMed  Google Scholar 

  • Simmons G, Alphey L, Vasquez T, Morrison NI, Epton MJ, Miller E, Miller TA, Staten RT (2007) Pink bollworm Pectinophora gossypiella in area-wide eradication or suppression programmes. In: Vreysen MB, Robinson AS, Hendrichs J (eds) Area-Wide Control of Insect Pests. Springer: Dordrecht, Netherlands, pp. 119–123

    Chapter  Google Scholar 

  • Singh KRP, Curtis CF, Krishnamurthy BS (1976) Partial loss of cytoplasmic incompatibility with age in males of Culex fatigans Wied. Ann Trop Med Parasit 70: 463–466

    CAS  PubMed  Google Scholar 

  • Sinkins SP, Braig HR, O’Neill SL (1995) Wolbachia pipientis: bacterial density and unidirectional incompatibility between infected populations of Aedes albopictus. Exp Parasitol 81: 284–291

    Article  CAS  PubMed  Google Scholar 

  • Sinkins SP, Curtis CF, O’Neill SL (1997) The potential application of inherited symbiont systems to pest control. In: O’Neill SL, Hoffmann AA, Werren JH (eds) Influential Passengers: Inherited Microorganisms and Arthropod Reproduction. Oxford University Press, Oxford, pp. 155–175

    Google Scholar 

  • Sinkins SP, O’Neill SL (2000) Wolbachia as a vehicle to modify insect populations. In: Handler A, James A (eds) Insect Transgenesis. CRC Press, Boca Raton, FL, pp. 271–287

    Chapter  Google Scholar 

  • Sinkins S, Gould F (2006) Gene drive systems for insect disease vectors. Nature Reviews Genetics 7: 427–435

    Article  CAS  PubMed  Google Scholar 

  • Staten RT, Rosander RW, Keaveny DF (1992) Genetic Control of Cotton Insects, The PBW as a working Programme. Proceedings of an International Symposium on Management of Insect Pests. Vienna 19–23 October 1992, pp. 269–283

    Google Scholar 

  • Stevens L (1989) Environmental factors affecting reproductive incompatibility in flour beetles, genus Tribolium. J Invert Pathol 53: 78–84

    Article  CAS  Google Scholar 

  • Stouthamer R, Breeuwer JAJ, Hurst GDD (1999) Wolbachia pipientis: microbial manipulator of arthropod reproduction. A Rev Microbiol 53: 71–102

    Article  CAS  Google Scholar 

  • Thomas DD, Donnelly CA, Wood RJ, Alphey LS (2000) Insect population control using a dominant, repressible, lethal genetic system. Science 287: 2474–2476

    Article  CAS  PubMed  Google Scholar 

  • Thomas MB, Read AF (2007) Fungal bioinsecticide with a sting. Nature Biotechnol 25: 1367–1368

    Article  CAS  Google Scholar 

  • Tripathi S, Suzuki J, Gonsalves D (2006) Development of genetically engineered resistant papaya for papaya ringspot virus in a timely manner. Methods Mol Biol 354: 197–240

    Google Scholar 

  • Tsien RY (1998) The green fluorescent protein. A Rev Biochem 67: 509–544

    Article  CAS  Google Scholar 

  • Vreysen MJB, Robinson AS, Hendrichs J (2007) Area-Wide Control of Insect Pests: from research to field implementation. Springer, Dordrecht, The Netherlands, 789 pp

    Google Scholar 

  • Wang C, St Leger R (2007) A scorpion neurotoxin increases the potency of a fungal insecticide. Nature Biotechnol 25: 1455–1456

    Article  CAS  Google Scholar 

  • Werren JH (1997) Biology of Wolbachia. A Rev Entomol 42: 587–609

    Article  CAS  Google Scholar 

  • Werren JH, O’Neill SL (1997) The evolution of heritable symbionts. In: O’Neill SL, Hoffmann AA, Werren JH (eds) Influential Passengers: Inherited Microorganisms and Arthropod Reproduction. Oxford University Press, Oxford, pp. 1–41

    Google Scholar 

  • Werren JH, Winsdor DM (2000) Wolbachia infection frequencies in insects: evidence of a global equilibrium? Proc R Soc Lond B Biol Sci 267: 1277–1285

    Article  CAS  Google Scholar 

  • Werren JH, Zhang W, Guo LR (1995) Evolution and phylogeny of Wolbachia-reproductive parasites of arthropods. Proc R Soc Lond B Biol Sci 261: 55–63

    Article  CAS  Google Scholar 

  • Xi Z, Khoo CCH, Dobson SL (2005) Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science 310: 326–328

    Article  CAS  PubMed  Google Scholar 

  • Zabalou S, Apostolaki A, Pattas S, Veneti Z, Paraskevopoulos C, Livadaras I, Markakis G, Brissac T, Merçot H, Bourtzis K (2008) Multiple rescue factors within a Wolbachia strain. Genetics 178: 2145–2160

    Article  PubMed  Google Scholar 

  • Zabalou S, Riegler M, Theodorakopoulou M, Stauffer C, Savakis C, Bourtzis K (2004) Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control. Proc Natl Acad Sci USA 101: 15042–15045

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work reported here was supported by continuing cooperative agreement 8500–0510-GR from United States Department of Agriculture-Animal Plant Health Inspection Service and Hatch Funds from the University of California, Agricultural Experiment Station (TAM).

Kostas Bourtzis thanks European Union (QLK-CT2000–1079 and CSA-REGPROT 203590 – MicrobeGR), the International Atomic Energy Agency, the Greek Secretariat for Research and Technology, the Greek Ministry of Education, the Empirikion Foundation and the University of Ioannina which have supported the research from his laboratory.

Oxitec Ltd funded part of the research reported here as well as the Arizona Cotton Research and Protection Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luke Alphey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Alphey, L., Bourtzis, K., Miller, T. (2009). Genetically Modified Insects as a Tool for Biorational Control. In: Ishaaya, I., Horowitz, A. (eds) Biorational Control of Arthropod Pests. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2316-2_8

Download citation

Publish with us

Policies and ethics