Skip to main content
Log in

Toward a Wolbachia Multilocus Sequence Typing System: Discrimination of Wolbachia Strains Present in Drosophila Species

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Among the diverse maternally inherited symbionts in arthropods, Wolbachia are the most common and infect over 20% of all species. In a departure from traditional genotyping or phylogenetic methods relying on single Wolbachia genes, the present study represents an initial Multilocus Sequence Typing (MLST) analysis to discriminate closely related Wolbachia pipientis strains, and additional data on sequence diversity in Wolbachia. We report a new phylogenetic characterization of four genes (aspC, atpD, sucB, and pdhB), and provide an expanded analysis of markers described in previous studies (16S rDNA, ftsZ, groEL, dnaA, and gltA). MLST analysis of the bacterial strains present in 16 different DrosophilaWolbachia associations detected four distinct clonal complexes that also corresponded to maximum-likelihood identified phylogenetic clades. Among the 16 associations analyzed, six could not be assigned to MLST clonal complexes and were also shown to be in conflict with relationships predicted by maximum-likelihood phylogenetic inferences. The results demonstrate the discriminatory power of MLST for identifying strains and clonal lineages of Wolbachia and provide a robust foundation for studying the ecology and evolution of this widespread endosymbiont.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Literature Cited

  1. Andersson SG, Zomorodipour A, Andersson JO, Sicheritz-Ponten T, Alsmark UC, Podowski RM, Naslund AK, Eriksson AS, Winkler HH, Kurland CG (1998) The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396:133–140

    Article  PubMed  CAS  Google Scholar 

  2. Baldo L, Bordenstein S, Wernegreen JJ, Werren JH (2006) Widespread recombination throughout Wolbachia genomes. Mol Biol Evol 23:437–449

    Article  PubMed  CAS  Google Scholar 

  3. Baldo L, Lo N, Werren JH (2005) Mosaic nature of the Wolbachia surface protein. J Bacteriol 187:5406–5418

    Article  PubMed  CAS  Google Scholar 

  4. Bandi C, Anderson TJ, Genchi C, Blaxter ML (1998) Phylogeny of Wolbachia in filarial nematodes. Proc Biol Sci 265:2407–2413

    Article  PubMed  CAS  Google Scholar 

  5. Bordenstein S, Rosengaus RB (2005) Discovery of a novel Wolbachia supergroup in isoptera. Curr Microbiol 51:393–398

    Article  PubMed  CAS  Google Scholar 

  6. Bordenstein SR, O’Hara FP, Werren JH (2001) Wolbachia-induced incompatibility precedes other hybrid incompatibilities in Nasonia. Nature 409:707–710

    Article  PubMed  CAS  Google Scholar 

  7. Bordenstein SR, Wernegreen JJ (2004) Bacteriophage flux in endosymbionts (Wolbachia): infection frequency, lateral transfer, and recombination rates. Mol Biol Evol 21:1981–1991

    Article  PubMed  CAS  Google Scholar 

  8. Bourtzis K, Dobson SL, Braig HR, O’Neill SL (1998) Rescuing Wolbachia have been overlooked. Nature 391:852–853

    Article  PubMed  CAS  Google Scholar 

  9. Bourtzis K, Nirgianaki A, Markakis G, Savakis C (1996) Wolbachia infection and cytoplasmic incompatibility in Drosophila species. Genetics 144:1063–1073

    PubMed  CAS  Google Scholar 

  10. Brayton KA, Kappmeyer LS, Herndon DR, Dark MJ, Tibbals DL, Palmer GH, McGuire TC, Knowles DP Jr (2005) Complete genome sequencing of Anaplasma marginale reveals that the surface is skewed to two superfamilies of outer membrane proteins. Proc Natl Acad Sci USA 102:844–849

    Article  PubMed  CAS  Google Scholar 

  11. Casiraghi M, Bordenstein SR, Baldo L, Lo N, Beninati T, Wernegreen JJ, Werren JH, Bandi C (2005) Phylogeny of Wolbachia pipientis based on gltA, groEL and ftsZ gene sequences: clustering of arthropod and nematode symbionts in the F supergroup, and evidence for further diversity in the Wolbachia tree. Microbiology 151:4015–4022

    Article  PubMed  CAS  Google Scholar 

  12. Casiraghi M, Werren JH, Bazzocchi C, Biserni A, Bandi C (2003) dnaA gene sequences from Wolbachia pipientis support subdivision into supergroups and provide no evidence for recombination in the lineages infecting nematodes. Parassitologia 45:13–18

    PubMed  CAS  Google Scholar 

  13. Charlat S, Le Chat L, Mercot H (2003) Characterization of non-cytoplasmic incompatibility inducing Wolbachia in two continental African populations of Drosophila simulans. Heredity 90:49–55

    Article  PubMed  CAS  Google Scholar 

  14. Charlat S, Nirgianaki A, Bourtzis K, Mercot H (2002) Evolution of Wolbachia-induced cytoplasmic incompatibility in Drosophila simulans and D. sechellia. Evolution 56:1735–1742

    Article  PubMed  Google Scholar 

  15. Christensen H, Kuhnert P, Olsen JE, Bisgaard M (2004) Comparative phylogenies of the housekeeping genes atpD, infB and rpoB and the 16S rRNA gene within the Pasteurellaceae. Int J Syst Evol Microbiol 54:1601–1609

    Article  PubMed  CAS  Google Scholar 

  16. Duron O, Lagnel J, Raymond M, Bourtzis K, Fort P, Weill M (2005) Transposable element polymorphism of Wolbachia in the mosquito Culex pipiens: evidence of genetic diversity, superinfection and recombination. Mol Ecol 14:1561–1573

    Article  PubMed  CAS  Google Scholar 

  17. Dyer KA, Jaenike J (2004) Evolutionarily stable infection by a male-killing endosymbiont in Drosophila innubila: molecular evidence from the host and parasite genomes. Genetics 168:1443–1455

    Article  PubMed  CAS  Google Scholar 

  18. Enright MC, Knox K, Griffiths D, Crook DW, Spratt BG (2000) Molecular typing of bacteria directly from cerebrospinal fluid. Eur J Clin Microbiol Infect Dis 19:627–630

    Article  PubMed  CAS  Google Scholar 

  19. Feil EJ, Maiden MC, Achtman M, Spratt BG (1999) The relative contributions of recombination and mutation to the divergence of clones of Neisseria meningitidis. Mol Biol Evol 16:1496–1502

    PubMed  CAS  Google Scholar 

  20. Foster J, Ganatra M, Kamal I, Ware J, Makarova K, Ivanova N, Bhattacharyya A, Kapatral V, Kumar S, Posfai J, Vincze T, Ingram J, Moran L, Lapidus A, Omelchenko M, Kyrpides N, Ghedin E, Wang S, Goltsman E, Joukov V, Ostrovskaya O, Tsukerman K, Mazur M, Comb D, Koonin E, Slatko B (2005) The Wolbachia genome of Brugia malayi: endosymbiont evolution within a human pathogenic nematode. PLoS Biol 3:e121

    Article  PubMed  Google Scholar 

  21. Fukatsu T (1999) Acetone preservation: a practical technique for molecular analysis. Mol Ecol 8:1935–1945

    Article  PubMed  CAS  Google Scholar 

  22. Giordano R, O’Neill SL, Robertson HM (1995) Wolbachia infections and the expression of cytoplasmic incompatibility in Drosophila sechellia and D. mauritiana. Genetics 140:1307–1317

    PubMed  CAS  Google Scholar 

  23. Hall TA (1999) BioEdit: a user-friendly biological sequence allignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  24. Hoffmann AA (1988) Partial cytoplasmic incompatibility between two Australian populations of Drosophila melanogaster. Entomol Exp Appl 48:61–67

    Article  Google Scholar 

  25. Hoffmann AA, Clancy D, Duncan J (1996) Naturally-occurring Wolbachia infection in Drosophila simulans that does not cause cytoplasmic incompatibility. Heredity 76 (Pt 1):1–8

    PubMed  Google Scholar 

  26. Hoffmann AA, Turelli M, Simmons GM (1986) Unidirectional incompatibility between populations of Drosophila simulans. Evolution 40:692–701

    Article  Google Scholar 

  27. Huigens ME, Stouthamer R (2003) Parthenogenesis associated with Wolbachia. In: Bourtzis K, Miller T (eds) Insect symbiosis. Boca Raton, FL: CRC Press, pp. 247–266

    Google Scholar 

  28. James AC, Ballard JW (2000) Expression of cytoplasmic incompatibility in Drosophila simulans and its impact on infection frequencies and distribution of Wolbachia pipientis. Evolution 54:1661–1672

    Article  PubMed  CAS  Google Scholar 

  29. Jiggins FM, Hurst GD, Yang Z (2002) Host-symbiont conflicts: positive selection on an outer membrane protein of parasitic but not mutualistic Rickettsiaceae. Mol Biol Evol 19:1341–1349

    PubMed  CAS  Google Scholar 

  30. Jiggins FM, von Der Schulenburg JH, Hurst GD, Majerus ME (2001) Recombination confounds interpretations of Wolbachia evolution. Proc Biol Sci 268:1423–1427

    Article  PubMed  CAS  Google Scholar 

  31. Jolley KA, Feil EJ, Chan MS, Maiden MC (2001) Sequence type analysis and recombinational tests (START). Bioinformatics 17:1230–1231

    Article  PubMed  CAS  Google Scholar 

  32. Koukou K, Pavlikaki H, Kilias J, Werren JH, Bourtzis K, Alahiotis SN (2006) Influence of antibiotic treatment and Wolbachia curing on sexual isolation among Drosophila melanogaster cage populations. Evolution 60:87–96

    Article  PubMed  Google Scholar 

  33. Lo N, Casiraghi M, Salati E, Bazzocchi C, Bandi C (2002) How many Wolbachia supergroups exist? Mol Biol Evol 19:341–346

    PubMed  CAS  Google Scholar 

  34. Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, Zhang Q, Zhou J, Zurth K, Caugant DA, Feavers IM, Achtman M, Spratt BG (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci USA 95:3140–3145

    Article  PubMed  CAS  Google Scholar 

  35. McGarry HF, Pfarr K, Egerton G, Hoerauf A, Akue JP, Enyong P, Wanji S, Klager SL, Bianco AE, Beeching NJ, Taylor MJ (2003) Evidence against Wolbachia symbiosis in Loa loa. Filaria J 2:9

    Article  PubMed  Google Scholar 

  36. McGraw EA, Merritt DJ, Droller JN, O’Neill SL (2002) Wolbachia density and virulence attenuation after transfer into a novel host. Proc Natl Acad Sci USA 99:2918–2923

    Article  PubMed  CAS  Google Scholar 

  37. McGraw EA, Merritt DJ, Droller JN, O’Neill SL (2001) Wolbachia-mediated sperm modification is dependent on the host genotype in Drosophila. Proc Biol Sci 268:2565–2570

    Article  PubMed  CAS  Google Scholar 

  38. Mercot H, Poinsot D (1998) Wolbachia transmission in a naturally bi-infected Drosophila simulans strain from New Caledonia. Entomol Exp Appl 86:97–103

    Article  Google Scholar 

  39. Min KT, Benzer S (1997) Wolbachia, normally a symbiont of Drosophila, can be virulent, causing degeneration and early death. Proc Natl Acad Sci USA 94:10792–10796

    Article  PubMed  CAS  Google Scholar 

  40. O’Neill SL, Giordano R, Colbert AM, Karr TL, Robertson HM (1992) 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci USA 89:2699–2702

    Article  PubMed  CAS  Google Scholar 

  41. O’Neill SL, Karr TL (1990) Bidirectional incompatibility between conspecific populations of Drosophila simulans. Nature 348:178–180

    Article  PubMed  CAS  Google Scholar 

  42. Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  43. Riegler M, Sidhu M, Miller WJ, O’Neill SL (2005) Evidence for a global Wolbachia replacement in Drosophila melanogaster. Curr Biol 15:1428–1433

    Article  PubMed  CAS  Google Scholar 

  44. Rigaud T (1997) Inherited microorganisms and sex determination of arthropod hosts. In: O’Neill SL, Hoffmann AA, Werren JH (eds), Influential passengers. Oxford: Oxford University Press, pp. 81–101

    Google Scholar 

  45. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  46. Rousset F, Solignac M (1995) Evolution of single and double Wolbachia symbioses during speciation in the Drosophila simulans complex. Proc Natl Acad Sci USA 92:6389–6393

    Article  PubMed  CAS  Google Scholar 

  47. Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  PubMed  CAS  Google Scholar 

  48. Salzberg SL, Hotopp JC, Delcher AL, Pop M, Smith DR, Eisen MB, Nelson WC (2005) Serendipitous discovery of Wolbachia genomes in multiple Drosophila species. Genome Biol 6:R23

    Article  PubMed  Google Scholar 

  49. Schulenburg JH, Hurst GD, Huigens TM, van Meer MM, Jiggins FM, Majerus ME (2000) Molecular evolution and phylogenetic utility of Wolbachia ftsZ and wsp gene sequences with special reference to the origin of male-killing. Mol Biol Evol 17:584–600

    PubMed  CAS  Google Scholar 

  50. Stouthamer R, Breeuwer JA, Hurst GD (1999) Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annu Rev Microbiol 53:71–102

    Article  PubMed  CAS  Google Scholar 

  51. Taylor MJ (2000) Wolbachia bacteria of filarial nematodes in the pathogenesis of disease and as a target for control. Trans R Soc Trop Med Hyg 94:596–598

    Article  PubMed  CAS  Google Scholar 

  52. van Loo IH, Heuvelman KJ, King AJ, Mooi FR (2002) Multilocus sequence typing of Bordetella pertussis based on surface protein genes. J Clin Microbiol 40:1994–2001

    Article  PubMed  Google Scholar 

  53. Veneti Z, Clark ME, Zabalou S, Karr TL, Savakis C, Bourtzis K (2003) Cytoplasmic incompatibility and sperm cyst infection in different Drosophila-Wolbachia associations. Genetics 164:545–552

    PubMed  Google Scholar 

  54. Werren JH (1997) Biology of Wolbachia. Annu Rev Entomol 42:587–609

    Article  PubMed  CAS  Google Scholar 

  55. Werren JH, Bartos JD (2001) Recombination in Wolbachia. Curr Biol 11:431–435

    Article  PubMed  CAS  Google Scholar 

  56. Werren JH, Zhang W, Guo LR (1995) Evolution and phylogeny of Wolbachia: reproductive parasites of arthropods. Proc Biol Sci 261:55–63

    PubMed  CAS  Google Scholar 

  57. Wu M, Sun LV, Vamathevan J, Riegler M, Deboy R, Brownlie JC, McGraw EA, Martin W, Esser C, Ahmadinejad N, Wiegand C, Madupu R, Beanan MJ, Brinkac LM, Daugherty SC, Durkin AS, Kolonay JF, Nelson WC, Mohamoud Y, Lee P, Berry K, Young MB, Utterback T, Weidman J, Nierman WC, Paulsen IT, Nelson KE, Tettelin H, O’Neill SL, Eisen JA (2004) Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements. PLoS Biol 2:E69

    Article  PubMed  Google Scholar 

  58. Xi Z, Khoo CC, Dobson SL (2005) Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science 310:326–328

    Article  PubMed  CAS  Google Scholar 

  59. Zabalou S, Charlat S, Nirgianaki A, Lachaise D, Mercot H, Bourtzis K (2004) Natural Wolbachia infections in the Drosophila yakuba species complex do not induce cytoplasmic incompatibility but fully rescue the wRi modification. Genetics 167:827–834

    Article  PubMed  Google Scholar 

  60. Zabalou S, Riegler M, Theodorakopoulou M, Stauffer C, Savakis C, Bourtzis K (2004) Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control. Proc Natl Acad Sci USA 101:15042–15045

    Article  PubMed  CAS  Google Scholar 

  61. Zhou W, Rousset F, O’Neil S (1998) Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proc Biol Sci 265:509–515

    Article  PubMed  CAS  Google Scholar 

  62. Zhu Y, Fournier PE, Eremeeva M, Raoult D (2005) Proposal to create subspecies of Rickettsia conorii based on multi-locus sequence typing and an emended description of Rickettsia conorii. BMC Microbiol 5:11

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Laura Baldo for her constructive comments and suggestions. The D. simulans (wMa) and D. innubila (wDin) were kindly provided by Prof. Bill Ballard and Prof. John Jaenike, respectively. This work was partially supported by intramural funds of the University of Ioannina to K. Bourtzis, by grants to J.J. Wernegreen from the National Institutes of Health (R01 GM62626-01) and the NASA Astrobiology Institute (NNA04CC04A), and to J.H. Werren and J.J. Wernegreen from the National Science Foundation (EF-0328363). This work was performed in part while S.R. Bordenstein held a National Research Council Research Associateship Award at the Marine Biological Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kostas Bourtzis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paraskevopoulos, C., Bordenstein, S.R., Wernegreen, J.J. et al. Toward a Wolbachia Multilocus Sequence Typing System: Discrimination of Wolbachia Strains Present in Drosophila Species. Curr Microbiol 53, 388–395 (2006). https://doi.org/10.1007/s00284-006-0054-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-006-0054-1

Keywords

Navigation