Skip to main content
  • 4137 Accesses

Abstract

Contact rates and transmission probabilities are based on complicated environmental conditions, and biological and social dynamics. There are many types of models that capture different aspects of these dynamics. Estimating contact related parameter values and transmission probabilities requires a good understanding of the details of the transmission process and the class of model being used to describe it. In this paper we review the basic classes of models, the connection between the chain of infection and the descriptions of the infection process including the meaning of “contacts” in the various modeling approaches. Some suggestions as to ways to better tie together the biological and mechanistic aspects of the infection process and the more phenomenological descriptions of model parameters are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Albert, R. Jeong, & A.L. Barabási (1999). Diameter of the world-wide web. Nature 401:130–131.

    Article  Google Scholar 

  2. L.A. Amaral, A. Scala, M. Barthelemy, & H.E. Stanley (2000). Classes of small-world networks. Proc. Natl. Acad. Sci. 97(21):11149–11152.

    Article  Google Scholar 

  3. R.M. Anderson & R.M. May (1991). Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, Oxford, UK.

    Google Scholar 

  4. M. Artzrouni (1990). On transient effects in the HIV/AIDS epidemic. J. Math. Biol. 28: 271–291.

    Article  MATH  MathSciNet  Google Scholar 

  5. B. Bollobás (1985). Random Graphs. Academic Press 516 pgs. London.

    MATH  Google Scholar 

  6. F. Brauer (1990). Models for the spread of universally fatal diseases. J. Math. Biol. 28: 451–462.

    Article  MATH  MathSciNet  Google Scholar 

  7. C. Castillo-Chavez, S. Busenberg, & K. Gerow (1991). Pair formation in structured populations. In: Differential Equations with Applications in Biology, Physics and Engineering., J. Goldstein, F. Kappel, & W. Schappacher, eds. Marced Dekker, New York pp. 47–65.

    Google Scholar 

  8. C. Castillo-Chavez , H.W. Hethcote, V. Andreasen, S.A. Levin, & W.M. Liu (1989). Epidemiological models with age structure, proportionate mixing, and cross-immunity. J. Math. Biol. 27:233–258.

    Article  MATH  MathSciNet  Google Scholar 

  9. Center for Disease Control & Prevention CDC website CDC Atlanta, GA. http://www.cdc.gov/ Cited 12 Dec. 2008

  10. F.B. Cohen (1994). A Short Course on Computer Viruses. Wiley 250 pgs. New York.

    MATH  Google Scholar 

  11. D.J. Daley & J. Gani (1999). Epidemic Modeling: An Introduction Cambridge University Press, N.Y, New York. 228 pgs.

    MATH  Google Scholar 

  12. O. Diekmann, J.A.P. Heesterbeek, & J.A.J. Metz (1998). A deterministic epidemic model taking account of repeated contacts between the same individuals. J. Appl. Prob. 35:462–468.

    Google Scholar 

  13. K.T.D. Eames, & M.J. Keeling (2002). Modeling dynamic and network heterogeneities in the spread of sexually transmitted diseases. Proc. Natl Acad. Sci. 99:13330–13335.

    Article  Google Scholar 

  14. W.J. Edmunds, C.J. O’Callaghan, & D.J. Nokes (1997). Who mixes with whom? A method to determine the contact patterns of adults that may lead to the spread of airborne infections. Proc. R. Soc. B 264:949–957.

    Article  Google Scholar 

  15. J. Gani, & D. Jerwood (1971). Markov Chain Methods in Chain Binomial Epidemic Models. Biometrics, 27(3):591–603.

    Article  Google Scholar 

  16. G.P. Garnett (2002). An introduction to mathematical models in sexually transmitted disease epidemiology. Sex. Transm. Inf. 78:7–12.

    Article  Google Scholar 

  17. A.C. Ghani & G.P. Garnett (1998). Measuring sexual partner networks for transmission of sexually transmitted diseases. J. R. Stat. Soc. A 161, 227–238.

    Article  Google Scholar 

  18. M. Greenwood (1931). The statistical measure of infectiveness. J. Hygiene, 31: 336–351.

    Article  Google Scholar 

  19. B.T. Grenfell, O.N. Bjornstad, & J. Kappey (2001). Travelling waves and spatial hierarchies in measles epidemics. Nature 414:716–723.

    Article  Google Scholar 

  20. M.E. Halloran, I.M. Longini, Jr., A. Nizam, & Y. Yang (2002). Containing bioterrorist smallpox. Science 298:1428–1432.

    Article  Google Scholar 

  21. D.T. Haydon, M. Chase-Topping, D.J. Shaw, L. Matthews, J.K. Friar, J. Wilesmith, & M.E.J. Woolhouse (2003). The construction and analysis of epidemic trees with reference to the 2001 UK foot-and-mouth outbreak. Proc. R. Soc. B 270:121–127.

    Article  Google Scholar 

  22. H.W. Hethcote (2000). The mathematics of infectious diseases. Siam Rev., 42(4):599–653.

    Article  MATH  MathSciNet  Google Scholar 

  23. D. L. Heymann, ed. (2004). Control of Communicable Diseases Manual. American Public Health Association. 700 pgs. Wasington D.C.

    Google Scholar 

  24. M.J. Keeling (2005). Implications of network structure for epidemic dynamics. Theor. Popul. Biol. 67:1–8.

    Article  MATH  Google Scholar 

  25. M.J. Keeling & K.T.D. Eames (2005). Networks and epidemic models. J. R. Soc. Interface 2:295–307.

    Article  Google Scholar 

  26. J.O. Kephart, G.B. Sorkin, D.M. Chess, & S.R. White (1997). Fighting computer viruses. Sci. Am. 277(5):88–93.

    Article  Google Scholar 

  27. W.O. Kermack & A.G. McKendrick (1927). Contributions to the mathematical theory of epidemics, part 1. Proc. Roy. Soc. London Ser. A, 115:700–721.

    Article  Google Scholar 

  28. I.M. Longini, Jr., A. Nizam, S. Xu, K. Ungchusak, J. Hanshaoworakul, D.A.T. Cummings, & M.E. Halloran (2005). Containing Pandemic Influenza at the Source. Science, 309:1083–1087. and online supporting material at www.sciencemag.org/cgi/content/full/309/5737/1078/DC1.

    Google Scholar 

  29. R.M. May & A.L. Lloyd (2001). Infection dynamics on scale-free networks. Physical Review E 64:066112.

    Article  Google Scholar 

  30. L.F. Olsen & W.M. Schaffer (1990). Chaos Versus Noisy Periodicity:Alternative Hypotheses for Childhood Epidemics. Science 249(4968):499–504.

    Article  Google Scholar 

  31. R. Pastor-Satorras & A. Vespignani (2001). Epidemic spreading in scale-free networks. Phys. Rev. E 63:066117.

    Article  Google Scholar 

  32. Pathport: The pathogen portal project (2002). Virginia Bioinformatics Institute. Blacksburg, VA. http://pathport.vbi.vt.edu/pathinfo/index.php Cited 12 Dec. 2008

  33. T.C. Timmreck (1994). An Introduction to Epidemiology. Jones & Bartlett 484 pgs. Boston.

    Google Scholar 

  34. D.J. Watts & S.H. Strogatz (1998). Collective dynamics of ‘small-world’ networks. Nature 393: 440–442.

    Article  Google Scholar 

  35. E.B. Wilson & M.H. Burke (1942). The epidemic curve. Proc. Nat. Acad. Sci. 28(9): 361–367.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Tennenbaum, S. (2009). The Chain of Infection, Contacts, and Model Parametrization. In: Chowell, G., Hyman, J.M., Bettencourt, L.M.A., Castillo-Chavez, C. (eds) Mathematical and Statistical Estimation Approaches in Epidemiology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2313-1_4

Download citation

Publish with us

Policies and ethics