Skip to main content

Limiting models in condensed matter Physics and gradient flows of 1-homogeneous functional

  • Conference paper
Geometric Partial Differential Equations proceedings

Part of the book series: CRM Series ((CRMSNS,volume 15))

  • 1210 Accesses

Abstract

We survey some recent results on variational and evolution problems concerning a certain class of convex 1-homogeneous functionals for vector-valued maps related to models in phase transitions (Hele-Shaw), superconductivity (Ginzburg-Landau) and superfluidity (Gross-Ktaevskii). Minimizers and gradient flows of such functionals may be characterized as solutions of suitable non-local vectorial generalizations of the classical obstacle problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 24.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 34.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. G. Aronsson, Minimization problem for the functional supx F (x, f (x), f ′(x)), Ark. Mat. 6 (1965), 33–53.

    Article  MATH  MathSciNet  Google Scholar 

  2. P. Athavale, R. L. Jerrard, M. Novaga and G. Orlandi, Weighted TV minimization and applications to vortex density models, preprint, 2013.

    Google Scholar 

  3. A. Aftalion and R. L. Jerrard, Shape of vortices for a rotating Bose-Einstein condensate, Physical Review A (2) 66 (2002), 023611/1-023611/7.

    Google Scholar 

  4. F. Alter, V. Caselles and A. Chambolle, A characterization of convex calibrables sets in ℝ N, Math. Annalen 332 (2005), 329–366.

    Article  MATH  MathSciNet  Google Scholar 

  5. S. Baldo, R. L. Jerrard, G. Orlandi and H. M. Soner, Convergence of Ginzburg-Landau functionals in 3-d superconductivity, Archive Rat. Mech. Analysis (3) 205 (2012), 699–752.

    Article  MATH  MathSciNet  Google Scholar 

  6. S. Baldo, R. L. Jerrard, G. Orlandi and H. M. Soner, Vortex density models for superconductivity and superfluidity, Comm. Math. Phys. (1) 318 (2013), 131–171.

    Article  MATH  Google Scholar 

  7. E. N. Barron, L. C. Evans and R. Jensen, The infinity Laplacian, Aronsson’s equation and their generalizations, Trans. Amer. Math. Soc. (1) 360 (2008), 77–101.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Briani, A. Chambolle, M. Novaga and G. Orlandi, On the gradient flow of a one-homogeneous functional, Confluentes Mathematici (4) 3, 617–635.

    Google Scholar 

  9. H. Brézis, “Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert”, North-Holland, Amsterdam, 1973.

    Google Scholar 

  10. G. Carlier and M. Comte, On a weighted total variation minimization problem, J. Funct. Anal. (1) 250 (2007), 214–226.

    Article  MATH  MathSciNet  Google Scholar 

  11. V. Caselles, A. Chambolle and M. Novaga, Total Variation in imaging, In: “Handbook of Mathematical Methods in Imaging”, Springer, 2011, 1016–1057.

    Google Scholar 

  12. V. Caselles, G. Facciolo and E. Meinhardt, Anisotropic Cheeger Sets and Applications, SLAM J. Imaging Sciences, (4) 2 (2009), 1211–1254.

    Article  MATH  MathSciNet  Google Scholar 

  13. D. Chiron, Boundary problems for the Ginzburg-Landau equation, Commun. Contemp. Math. 7 (2005), 597–648.

    Article  MATH  MathSciNet  Google Scholar 

  14. C. M. Elliott and V. Janovský, A variational inequality approach to Hele-Shaw flow with a moving boundary, Proc. Roy. Soc. Edinburgh Sect. A 88 (1981), 93–107.

    Article  MATH  MathSciNet  Google Scholar 

  15. I. Ionescu and T. Lachand-Robert, Generalized Cheeger sets related to landslides, Calc. Var. Partial Differential Equations (2) 23 (2005), 227–249.

    Article  MATH  MathSciNet  Google Scholar 

  16. B. Gustafsson, Applications ofVariational inequalities to a moving boundary problem for Hele Shaw flows, Siam J. Math. Anal. 16 (1985), 279–300.

    Article  MATH  MathSciNet  Google Scholar 

  17. C. I. Kim and A. Mellet, Homogenization of a Hele-Shaw problem in periodic and random media, Arch. Rat. Mech. Anal. 194 (2009), 507–530.

    Article  MATH  MathSciNet  Google Scholar 

  18. Y. Meyer, “Oscillating Patterns in Image Processing and Nonlinear Evolution Equations”, University Lecture Series, 22. American Mathematical Society, Providence, RI, 2001.

    Google Scholar 

  19. A. Montero and B. Stephens, On the geometry of Gross-Pitaevskii vortex curves for generic data, Proceedigs of the A.M.S., to appear, 2012.

    Google Scholar 

  20. Y. Peres, O. Schramm, S. Sheffield and D. Wilson, Tug-of-war and the infinity Laplacian, J. Amer. Math. Soc. (1) 22 (2009), 167–210.

    Article  MATH  MathSciNet  Google Scholar 

  21. L. Rudin, S. J. Osher and E. FATEMI, Nonlinear total variation based noise removal algorithms, Physica D 60 (1992), 259–268.

    Article  MATH  Google Scholar 

  22. S. K. Smirnov, Decomposition of solenoidal vector charges into elementary solenoids, and the structure of normal one-dimensional flows, Rossiĭskaya Akademiya Nauk. Algebra i Analiz 5 (1993), 206–238.

    MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Scuola Normale Superiore Pisa

About this paper

Cite this paper

Novaga, M., Orlandi, G. (2013). Limiting models in condensed matter Physics and gradient flows of 1-homogeneous functional. In: Chambolle, A., Novaga, M., Valdinoci, E. (eds) Geometric Partial Differential Equations proceedings. CRM Series, vol 15. Edizioni della Normale, Pisa. https://doi.org/10.1007/978-88-7642-473-1_11

Download citation

Publish with us

Policies and ethics