Skip to main content

Synthetic and Biological Meshes for Pelvic Floor Disorders

  • Chapter
Pelvic Floor Disorders: Surgical Approach

Part of the book series: Updates in Surgery ((UPDATESSURG))

  • 1917 Accesses

Abstract

New innovative surgical procedures will achieve general acceptance and change former standards if they have the capacity to improve clinical outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Olsen AL, Smith VJ, Bergstrom JO et al (1997) Epidemiology of surgically managed pelvic organ prolapse and urinary incontinence. Obstet Gynecol 89:501–506

    Article  PubMed  CAS  Google Scholar 

  2. Paraiso MF, Ballard LA, Walters MD (1996) Pelvic support defects and visceral and sexual function in women treated with sacrospinous ligament suspension and pelvic reconstruction. Am J Obstet Gynecol 175:1423–1431

    Article  PubMed  CAS  Google Scholar 

  3. Scott NW, McCormack K, Graham P et al (2002) Open mesh versus non-mesh for repair of femoral and inguinal hernia. Cochrane Database Syst Rev 4:CD002197

    PubMed  Google Scholar 

  4. A Gomelsky, DF Penson, Dmochowski RR (2010) Pelvic organ prolapse (POP) surgery: the evidence for the repairs. BJU 107:1704–1719

    Google Scholar 

  5. Morgan DM (2012) Discussion: the use of biological materials in urogynecologic reconstruction: a systematic review. Plast Reconstr Surg 130:254S–255S

    Article  PubMed  CAS  Google Scholar 

  6. Yurteri-Kaplan LA, Gutman RE (2012) The use of biological materials in urogynecologic reconstruction: a systematic review. Plast Reconstr Surg 130:242S–253S

    Article  PubMed  CAS  Google Scholar 

  7. Brubaker L, Norton PA, Albo ME et al (2011) Adverse events over two years after retropubic or transobturator midurethral sling surgery: findings from the trial of midurethral sling (TOMUS) study. Am J Obstet Gynecol 205:498.e1–e6

    Article  Google Scholar 

  8. Deprest J, Feola A (2013) The need for preclinical research on pelvic floor reconstruction. BJOG 120:141–143

    Article  PubMed  CAS  Google Scholar 

  9. Slack M, Ostergard D, Cervigni M, Deprest J (2012) A standardized description of graft-containing meshes and recommended steps before the introduction of medical devices for prolapse surgery. Int Urogynecol J 23:15–26

    Article  Google Scholar 

  10. van Tuil C, Saxena AK, Willital GH (2006) Experience with management of anterior abdominal wall defects using bovine pericard. Hernia 10:41–47

    Article  PubMed  Google Scholar 

  11. Hodde JP, Johnson CE (2007) Extracellular matrix as a strategy for treating chronic wounds. Am J Clin Dermatol 8:61–66

    Article  PubMed  Google Scholar 

  12. Hodde J (2006) Extracellular matrix as a bioactive material for soft tissue reconstruction. ANZ J Surg 76:1096–1100

    Article  PubMed  Google Scholar 

  13. Grethel EJ, Cortes RA, Wagner AJ et al (2006) Prosthetic patches for congenital diaphragmatic hernia repair: Surgisis® vs Gore-Tex. J Pediatr Surg 41:29–33

    Article  PubMed  Google Scholar 

  14. Böhm G, Binnebosel M, Krähling E et al (2011) Influence of the elasticity module of synthetic and natural polymeric tissue substitutes on the mobility of the diaphragm and healing process in a rabbit model. J Biomater Appl 25:771–793

    Article  PubMed  Google Scholar 

  15. Böhm G, Steinau G, Krähling E et al (2011) Is biocompatibility affected by constant shear stress?-Comparison of three commercially available meshes in a rabbit model. J Biomater Appl 25:721–741

    Article  PubMed  Google Scholar 

  16. Lantis JC 2nd, Gallivan EK, Hekier R et al (2000) A comparison of collagen and PTFE patch repair in a rabbit model of congenital diaphragmatic hernia. J Invest Surg 13:319–325

    Article  PubMed  Google Scholar 

  17. Sandoval JA, Lou D, Engum SA et al (2006) The whole truth: comparative analysis of diaphragmatic hernia repair using 4-ply vs. 8-ply small intestinal submucosa in a growing animal model. J Pediatr Surg 41: 518–523

    Article  PubMed  Google Scholar 

  18. Trabuco EC, Zobitz ME, Klingele CJ, Gebhart JB (2007) Effect of host response (incorporation, encapsulation, mixed incorporation and encapsulation, or resorption) on the tensile strength of graft-reinforced repair in the rat ventral hernia model. Am J Obstet Gynecol 197:638.e1–6

    Article  Google Scholar 

  19. Konstantinovic ML, Lagae P, Zheng F et al (2005) Comparison of host response to polypropylene and non-cross-linked porcine small intestine serosal-derived collagen implants in a rat model. BJOG 112:1554–1560

    Article  PubMed  CAS  Google Scholar 

  20. Gaertner WB, Bonsack ME, Delaney JP (2007) Experimental evaluation of four biologic prostheses for ventral hernia repair. J Gastrointest Surg 11:1275–1285

    Article  PubMed  Google Scholar 

  21. Rauth TP, Poulose BK, Nanney LB, Holzman MD (2007) A comparative analysis of expanded polytetrafluoroethylene and small intestinal submucosa — implications for patch repair in ventral herniorrhaphy. J Surg Res 143:43–49

    Article  PubMed  CAS  Google Scholar 

  22. Gupta A, Zahriya K, Mullens PL et al (2006) Ventral herniorrhaphy: experience with two different biosynthetic mesh materials, Surgisis® and Alloderm. Hernia 10:419–425

    Article  PubMed  CAS  Google Scholar 

  23. Ozog Y, Konstantinovic ML, Verschueren S et al (2009) Experimental comparison for abdominal wall repair using different methods of enhancement by small intestinal submucosa graft. Int Urogynecol J 20:435–441

    Article  Google Scholar 

  24. Ahmad M, Sileri P, Franceschilli L, Mercer-Jones M (2012) The role of biologics in pelvic floor surgery. Colorectal Dis 14:19–23

    Article  PubMed  Google Scholar 

  25. Mitchell IA, Garcia NM, Barber R et al (2008) Permacol: a potential biologic patch alternative in congenital diaphragmatic hernia repair. J Pediatr Surg 43:2161–2164

    Article  PubMed  Google Scholar 

  26. Sileri P, Franceschilli L, De Luca E et al (2012) Laparoscopic ventral rectopexy for internal rectal prolapse using biological mesh: postoperative and short-term functional results. J Gastrointest Surg 16:622–628

    Article  PubMed  Google Scholar 

  27. Shaikh FM, Giri SK, Durrani S et al (2007) Experience with porcine acellular dermal collagen implant in one-stage tension-free reconstruction of acute and chronic abdominal wall defects. World J Surg 31:1966–1972

    Article  PubMed  Google Scholar 

  28. Kaya M, Baba F, Bolukbas F et al (2006) Use of homlogous acellular dermal matrix for abdominal wall reconstruction in rats. J Invest Surg 19:11–17

    Article  PubMed  Google Scholar 

  29. Trabuco EC, Zobitz ME, Klingele CJ, Gebhart JB (2007) Effect of host response (incorporation, encapsulation, mixed incorporation and encapsulation, or resorption) on the tensile strength of graft-reinforced repair in the rat ventral hernia model. Am J Obstet Gynecol 197:638.e1–e6

    Article  Google Scholar 

  30. Clearhout F, De Ridder D, Van Beckevoort D et al (2010) Sacrocolpopexy using xenogenic acellular collagen in patients at increased risk for graft-related complications. Neurourol Urodynam 29:563–567

    Google Scholar 

  31. D’Hoore A, Cadoni R, Penninckx F (2004) Long-term outcome of laparoscopic ventral rectopexy for total rectal prolapse. Brit J Surg 91:1500–1505

    Article  PubMed  Google Scholar 

  32. Faucheron J-L, Voirin D, Riboud R et al (2012) Laparoscopic anterior rectopexy to the promontory for full-thickness rectal prolapse in 175 consecutive patients: short-and long-term follow-up. Dis Colon Rectum 55:660–665

    Article  PubMed  Google Scholar 

  33. Barbolt TA (2006) Biology of polypropylene/polyglactin 910 grafts. Int Urogynecol J 17:S26–S30

    Article  Google Scholar 

  34. Bellows CF, Wheatley BM, Moroz K et al (2011) The effect of bacterial infection on the biomechanical properties of biological mesh in a rat model. PLoSOne 6:e21228

    Article  CAS  Google Scholar 

  35. Bellows CF, Smith A, Malsbury J, Helton WS (2013) Repair of incisional hernias with biological prosthesis: a systematic review of current evidence. Am J Surg 205:85–101

    Article  PubMed  Google Scholar 

  36. Deerenberg EB, Mulder IM, Grotenhuis N et al (2012) Experimental study on synthetic and biological mesh implantation in a contaminated environment. Br J Surg 99:1734–1741

    Article  PubMed  CAS  Google Scholar 

  37. Quiroz LH, Gutman RE, Shippey S et al (2008) Abdominal sacrocolpopexy: anatomic outcomes and complications with Pelvicol, autologous and synthetic graft materials. Am J Obstet Gynecol 198:557.e1–e5

    Article  Google Scholar 

  38. Blatnik J, Jin J, Rosen M (2008) Abdominal hernia repair with bridging acellular dermal matrix— an expensive hernia sac. Am J Surg 196:47–50

    Article  PubMed  Google Scholar 

  39. Deprest J, De Ridder D, Roovers JP et al (2009) Medium term outcome of laparoscopic sacrocolpopexy with xenografts Compared to synthetic grafts. J Urol 182:2362–2368

    Article  PubMed  Google Scholar 

  40. Klosterhalfen B, Junge K, Klinge U (2005) The lightweight and large porous mesh concept for hernia repair. Expert Rev Med Devices 2:103–117

    Article  PubMed  Google Scholar 

  41. Rosch R, Junge K, Schachtrupp A et al (2003) Mesh implants in hernia repair. Inflammatory cell response in a rat model. Eur Surg Res 35:161–166

    Article  PubMed  CAS  Google Scholar 

  42. Vaudaux P, Pittet D, Haeberli A et al (1989) Host factors selectively increase staphylococcal adherence on inserted catheters: a role for fibronectin and fibrinogen or fibrin. J Infect Dis 160:865–875

    Article  PubMed  CAS  Google Scholar 

  43. Cheung AL, Fischetti VA (1990) The role of fibrinogen in staphylococcal adherence to catheters in vitro. J Infect Dis 161:1177–1186

    Article  PubMed  CAS  Google Scholar 

  44. McDevitt D, Francois P, Vaudaux P, Foster TJ (1994) Molecular characterization of the clumping factor (fibrinogen receptor) of Staphylococcus aureus. Mol Microbiol 11:237–248

    Article  PubMed  CAS  Google Scholar 

  45. Ni Eidhin D, Perkins S, Francois P (1998) Clumping factor B (ClfB), a new surface-located fibrinogen-binding adhesin of Staphylococcus aureus. Mol Microbiol 30:245–257

    Article  CAS  Google Scholar 

  46. Novitsky YW, Cristiano JA, Harrell AG et al (2008) Immunohistochemical analysis of host reaction to heavyweight-, reduced-weight-, and expanded polytetrafluoroethylene (ePTFE)-based meshes after short-and long-term intraabdominal implantations. Surg Endosc 22:1070–1076

    Article  PubMed  CAS  Google Scholar 

  47. Harrell AG, Novitsky YW, Cristiano JA et al (2007) Prospective histologic evaluation of intra-abdominal prosthetics four months after implantation in a rabbit model. Surg Endosc 21:1170–1174

    Article  PubMed  Google Scholar 

  48. Koninger J, Redecke J, Butters M (2004) Chronic pain after hernia repair: a randomized trial comparing Shouldice, Lichtenstein and TAPP. Langenbecks Arch Surg 389:361–365

    Article  PubMed  Google Scholar 

  49. Bellon JM, Rodriguez M, Garcia-Honduvilla N et al (2009) Comparing the behavior of different polypropylene meshes (heavy and lightweight) in an experimental model of ventral hernia repair. J Biomed Mater Res B Appl Biomater 89B:448–455

    Article  CAS  Google Scholar 

  50. García-Ureña MA, Ruiz VV, Godoy AD et al (2007) Differences in polypropylene shrinkage depending on mesh position in an experimental study. Am J Surg 193:538–542

    Article  PubMed  Google Scholar 

  51. Novitsky YW, Harrell AG, Cristiano JA et al (2007) Comparative evaluation of adhesion formation, strength of ingrowth, and textile properties of prosthetic meshes after long-term intra-abdominal implantation in a rabbit. J Surg Res 140:6–11

    Article  PubMed  CAS  Google Scholar 

  52. Emans PJ, Schreinemacher MHF, Gijbels MJJ et al (2009) Polypropylene meshes to prevent abdominal herniation. Can stable coatings prevent adhesions in the long term? Ann Biomed Eng 37:410–418

    Article  PubMed  Google Scholar 

  53. Schreinemacher MH, Emans PJ, Gijbels MJ et al (2009) Degradation of mesh coatings and intraperitoneal adhesion formation in an experimental model. Br J Surg 96:305–313

    Article  PubMed  CAS  Google Scholar 

  54. Junge K, Rosch R, Krones CJ et al (2005) Influence of polyglecaprone 25 (Monocryl) supplementation on the biocompatibility of a polypropylene mesh for hernia repair. Hernia 9:212–217

    Article  PubMed  CAS  Google Scholar 

  55. Conze J, Kingsnorth AN, Flament JB et al (2005) Randomized clinical trial comparing lightweight composite mesh with polyester or polypropylene mesh for incisional hernia repair. Br J Surg 92:1488–1493

    Article  PubMed  CAS  Google Scholar 

  56. Böhm G, Ushakova Y, Alizai HP et al (2011) Biocompatibility of PLGA/sP(EO-stat-PO)-coated mesh surfaces under constant shearing stress. Eur Surg Res 47:118–129

    Article  PubMed  Google Scholar 

  57. Grafahrend D, Heffels KH, Beer MV et al (2011) Degradable polyester scaffolds with controlled surface chemistry combining minimal protein adsorption with specific bioactivation. Nat Mater 10:67–73

    Article  PubMed  CAS  Google Scholar 

  58. Groll J, Fiedler J, Engelhard E et al (2005) A novel star PEG-derived surface coating for specific cell adhesion. J Biomed Mater Res A 74:607–617

    PubMed  Google Scholar 

  59. Gasteier P, Reska A, Schulte P et al (2007) Surface grafting of PEO-based star shaped mole-cules for bioanalytical and biomedical applications. Macromol Biosci 7:1010–1023

    Article  PubMed  CAS  Google Scholar 

  60. Neuss S, Apel C, Buttler P et al (2008) Assessment of stem cell/biomaterial combinations for stem cell-based tissue engineering. Biomaterials 29:302–313

    Article  PubMed  CAS  Google Scholar 

  61. Weyhe D, Hoffmann P, Belyaev O et al (2007) The role of TGF-beta1 as a determinant of foreign body reaction to alloplastic materials in rat fibroblast cultures: comparison of different commercially available polypropylene meshes for hernia repair. Regul Pept 138:10–14

    Article  PubMed  CAS  Google Scholar 

  62. van Wachem PB, Brouwer LA, van Luyn MJ (1999) Absence of muscle regeneration after implantation of a collagen matrix seeded with myoblasts. Biomaterials 20:419–426

    Article  PubMed  Google Scholar 

  63. Kunisaki SM, Fuchs JR, Kaviani A et al (2006) Diaphragmatic repair through fetal tissue engineering: a comparison between mesenchymal amniocyte-and myoblast-based constructs. J Pediatr Surg 41:34–39

    Article  PubMed  Google Scholar 

  64. Fuchs JR, Kaviani A, Oh JT et al (2004) Diaphragmatic reconstruction with autologous tendon engineered from mesenchymal amniocytes. J Pediatr Surg 39: 834–838

    Article  PubMed  Google Scholar 

  65. Yao C, Prével P, Koch S (2004) Modification of collagen matrices for enhancing angiogenesis. Cells Tissues Organs 178:189–196

    Article  PubMed  CAS  Google Scholar 

  66. Manodoro S, Endo M, Uvin P et al (2013) Graft-related complications and biaxial tensiometry following experimental vaginal implantation of flat mesh of variable dimensions. BJOG 120:244–250

    Article  PubMed  CAS  Google Scholar 

  67. Liang R, Abramowitch S, Knight K (2012) Vaginal degeneration following implantation of synthetic mesh with increased stiffness. BJOG 120:233–243

    Article  Google Scholar 

  68. D’Hoore A, Penninckx F (2006) Laparoscopic ventral recto(colpo)pexy for rectal prolapse: surgical technique and outcome for 109 patients. Surg Endosc 20:1919–1923

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Böhm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Italia

About this chapter

Cite this chapter

Böhm, G. (2014). Synthetic and Biological Meshes for Pelvic Floor Disorders. In: Gaspari, A.L., Sileri, P. (eds) Pelvic Floor Disorders: Surgical Approach. Updates in Surgery. Springer, Milano. https://doi.org/10.1007/978-88-470-5441-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-5441-7_27

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-5440-0

  • Online ISBN: 978-88-470-5441-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics