Skip to main content
  • 167 Accesses

Abstract

To the clinician acidosis is the increased production and/or decreased elimination of acid by the body. To the biochemist or the physiologist acidosis is a process that increases the concentration of hydrogen ion (H+) in a solution (such as blood). At first glance, this distinction seems minor, but its implications are enormous. The most important implication is that acidosis is not merely the addition (or the decreased elimination) of H+. One simple example of this is respiratory acidosis. The body “eliminates” most of its H+ by eliminating CO2. Yet CO2 does not contain H+. Where does the H+ go? The answer is that it becomes water (H+ + HCO -3 → H2CO3 → CO2 + H2O). This answer seems satisfactory until one asks how an increase in CO2 produces an increase in H+ concentration. The answer is that CO2 is in equilibrium with HCO -3 and thus an increase in CO2 produces an increase in H+ and HCO3” (i.e., the reaction is reversible). Here we see that the change in CO2 produces a change in H+ concentration. The H+ itself comes from the dissociation of water. This chapter will focus on the other determinates of H+ concentration in biologic solutions and the clinical effects of changes in these determinants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Stewart P (1981) How to understand acid-base: a quantitative acid-base primer for biology and medicine. Elsevier, New York

    Google Scholar 

  2. Narins RG, Jones ER, Townsend R, Goodkin DA, Shay RJ (1985) Metabolic acid-base disorders: pathophysiology, classification and treatment. In: Arieff AI, DeFronzo RA (eds) Fluid, electrolyte, and acid-base disorders. Churchill Livingstone, New York, pp 269–384

    Google Scholar 

  3. Figge J, Mydosh T, Fend V (1992) Serum proteins and acid-base equilibria: A follow-up. J Lab Clin Med 120:713–719

    PubMed  CAS  Google Scholar 

  4. Kellum JA, Kramer DJ, Pinsky MR (1995) Strong ion gap: a methodology for exploring unexplained Anions. J Crit Care 10:51–55

    Article  PubMed  CAS  Google Scholar 

  5. Weil MH, Afifi AA (1970) Experimental and clinical studies on lacate and pyruvate as indicators of the severity of acute circulatory failure (shock). Circulation 41:989–1001

    PubMed  CAS  Google Scholar 

  6. Vitek V, Cowley RA (1971) Blood lactate in the prognosis of various forms of shock. Ann Surg 173:308–313

    Article  PubMed  CAS  Google Scholar 

  7. Blair E (1971) Acid-base balance in bacteremic shock. Arch Intern Med 127:731–739

    Article  PubMed  CAS  Google Scholar 

  8. Madias NE (1986) Lactic acidosis. Kidney Int 29:752–774

    Article  PubMed  CAS  Google Scholar 

  9. Mizock BA, Falk JL (1992) Lactic acidosis in critical illness. Crit Care Med 20:80–93

    Article  PubMed  CAS  Google Scholar 

  10. van Lambalgen AA, Runge HC, van den Bos GC, Thijs LG (1988) Regional lactate production in early canine endotoxin shock. Am J Physiol 254:E45–51

    PubMed  Google Scholar 

  11. Cain SM, Curtis SE (1991) Systemic and regional oxygen uptake and delivery and lactate flux in endotoxic dogs infused with dopexamine. Crit Care Med 19:1552–1560

    Article  PubMed  CAS  Google Scholar 

  12. Bellomo R, Ondulick B, Kellum J, Pinsky MR (1994) Visceral lactate fluxes during early endotoxemia in the dog. Am J Respir Crit Care Med 149:A413

    Google Scholar 

  13. Sayeed MM (1982) Pulmonary cellular dysfunction in endotoxin shock: metabolic and transport derangements. Circ Shock 9:335–355

    PubMed  CAS  Google Scholar 

  14. Bowles SA, Schlichtig R, Kramer DJ, Klions HA (1992) Arteriovenous pH and partial pressure of carbon dioxide detect critical oxygen delivery during progressive hemorrhage in dogs. J Crit Care 7:95–105

    Article  Google Scholar 

  15. Gutierrez G, Clark C, Nelson C, Tiu A, Brown S (1993) The lung as a source of lactate in sepsis and ARDS. Chest 104:S12

    Google Scholar 

  16. Kellum JA, Kramer DJ, Mankad S, Pinsky MR, Bellomo R, Lee KH (1995) Release of lactate by the lung in acute ARDS. Crit Care Med, 23:A107

    Article  Google Scholar 

  17. Lee KH, Rico P, Ondulick BW, Pinsky MR (1995) Hydrochloric acid-induced lung injury is not associated with a positive lung lactate flux. Am J Respir Crit Care Med 151:A761

    Google Scholar 

  18. Kilpatrick-Smith L, Dean J, Erecinska M, Silver IA (1983) Cellular effects of endotoxin in vitro. II Reversibility of endotoxic damage. Circ Shock 11:101–111

    PubMed  CAS  Google Scholar 

  19. van Lambalgen AA, Bronsveld W, van den Bos GC, Thijs LG (1984) Distribution of cardiac output, oxygen consumption and lactate production in canine endotoxin shock. Cardiovasc Res 18:195–205

    Article  PubMed  Google Scholar 

  20. Rackow EC, Mecher C, Astiz ME, Goldstien C, McKee D, Weil MH (1990) Unmeasured anion during severe sepsis with metabolic acidosis. Circ Shock 30:107–115

    PubMed  CAS  Google Scholar 

  21. Gabow P, Kaehny W, Fennessey P, Goodman SI, Gross PA, Schrier RW (1980) Diagnostic importance of an increased serum anion gap. N Engl J Med 303:854–858

    Article  PubMed  CAS  Google Scholar 

  22. Mehta K, Kruse JA, Carlson RW (1986) The relationship between anion gap and elevated lactate. Crit Care Med 14:405

    Article  Google Scholar 

  23. Mecher C, Rackow EC, Astiz ME, Weil MH (1991) Unaccounted for anion in metabohc acidosis during severe sepsis in humans. Crit Care Med 19:705–711

    Article  PubMed  CAS  Google Scholar 

  24. Kellum JA, Kramer DJ, Pinsky MR (1994) Unexplained positive anion gap metabohc acidosis in end stage liver disease. Crit Care Med 22:A209

    Article  Google Scholar 

  25. Kellum JA, Bellomo R, Kramer DJ, Pinksy MR (1995) Hepatic anion flux during acute endotoxemia. J Appl Physiol 78:2212–2217

    PubMed  CAS  Google Scholar 

  26. Rackow EC, Mecher C, Astiz ME, Goldstien C, McKee D, Weil MH (1990) Unmeasured anion during severe sepsis with metabolic acidosis. Circ Shock 30:107–115

    PubMed  CAS  Google Scholar 

  27. Gilfix BM, Bique M, Magder S (1993) A physical chemical approach to the analysis of acidbase balance in the clinical setting. J Crit Care 8(4):187–197

    Article  PubMed  CAS  Google Scholar 

  28. Garella S, Chang BS, Kahn SI (1975) Dilution acidosis and contraction alkalosis: Review of a concept. Kidney Int 8:279–283

    Article  PubMed  CAS  Google Scholar 

  29. Kellum JA, Bellomo R, Kramer DJ, Pinsky MR (1995) Etiology of metabolic acidosis during sahne resuscitation in edotoxemia. Am J Respir Crit Care Med 151:A318

    Google Scholar 

  30. Guggenheim EA (1957) Thermodynamics, an advanced treatment for chemists and physicists. North-Holland, Amsterdam, pp 378–382

    Google Scholar 

  31. Kellum JA, Bellomo R, Kramer DJ, Pinsky MR (1995) Fixed acid uptake by visceral organs during early endotoxemia. Crit Care Med 23:A173

    Article  Google Scholar 

  32. Fiddian-Green R (1989) Splanchnic ischemia and multiple organ failure. Mosby, London, pp 349–363

    Google Scholar 

  33. Antonsson JB, Boyle CC III, Kruithoff KI et al (1990) Vahdation of tonometric measurement of gut intramural pH during endotoxemia and mesenteric occlusion in pigs. Am J Physiol 259:G519-G523

    PubMed  CAS  Google Scholar 

  34. Montgomery A, Almquist P, Arvidsson D et al (1990) Early detection of gastrointestinal mucosal ischemia in porcine E. coli sepsis. Acta Chir Scand 156:613–620

    CAS  Google Scholar 

  35. Montgomery A, Hartmann M, Jonsson K, Haglund U et al (1989) Intramucosal pH measurement with tonometers for detecting gastrointestinal ischemia in porcine hemorrhagic shock. Circ Shock 29:319–327

    PubMed  CAS  Google Scholar 

  36. Salzman AL, Wang H, Wollert PS et al (1994) Endotoxin-induced ileal mucosal hyperpermeability in pigs: role of tissue acidosis. Am J Physiol 266:G633–646

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Italia, Milano

About this chapter

Cite this chapter

Kellum, J.A. (1996). Acidosis in the Critically Ill: Interpretation and Significance. In: Gullo, A. (eds) Anaesthesia, Pain, Intensive Care and Emergency Medicine — A.P.I.C.E.. Springer, Milano. https://doi.org/10.1007/978-88-470-2203-4_74

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2203-4_74

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-3-540-75014-7

  • Online ISBN: 978-88-470-2203-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics