Skip to main content

Acid-Base Disorders in the PICU

  • Chapter
  • First Online:
Pediatric Critical Care Medicine

Abstract

An appropriate acid-base milieu is essential for normal cellular function of the human organism. Disturbances of the pH balance frequently occur in critically ill or injured children. These pertubations most often serve as a marker of an underlying disorder responsible for their occurrence, but acid-base disturbances may in themselves require monitoring and treatment in the PICU. Proper assessment and treatment of acid-base imbalances therefore requires an understanding of terminology and measurement, insight into buffer systems, and recognition of the compensatory interactions involved in maintaining a homeostatic balance. The terms acidosis and alkalosis refer to the mechanisms which result in a given acid-base disturbance. Primary acid-base disorders are further classified as either metabolic or respiratory. Metabolic contribution to acid-base homeostasis is based on the presence of strong anions and cations. Ion strength is based on the tendency of an ion to dissociate in aqueous solutions and tendency to combine with other ions. The concentration difference between the sum of all strong anions and strong cations is defined as the strong ion difference (SID). The anion gap, determined by presence or absence of unmeasured anions, helps guide understanding of the etiology of metabolic acidosis, one of the most common disturbances in the critically ill child. Hypercapnic acidosis impacts pH balance, but could have potential therapeutic effects in children with acute lung injury. Specific therapies, such as intravenous fluids and cardiopulmonary bypass, intrinsically affect acid-base balance, and their impact should be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Story DA. Bench-to-bedside review: a brief history of clinical acid-base. Crit Care. 2004;8:253–8.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Narins RG, Emmett M. Simple and mixed acid-base disorders: a practical approach. Medicine. 1980;59:161–87.

    Article  CAS  PubMed  Google Scholar 

  3. Brewer ED. Disorders of acid-base balance. Pediatr Clin North Am. 1990;37:429–47.

    Article  CAS  PubMed  Google Scholar 

  4. Adrogue HE, Adrogue HJ. Acid-base physiology. Respir Care. 2001;46:328–41.

    CAS  PubMed  Google Scholar 

  5. Epstein SK, Singh N. Respiratory acidosis. Respir Care. 2001;46:366–83.

    CAS  PubMed  Google Scholar 

  6. Mazzeo AT, Spada A, Pratico C, Lucanto T, Santamaria LB. Hypercapnia: what is the limit in paediatric patients? A case of near-fatal asthma successfully treated by multipharmacological approach. Paediatr Anaesth. 2004;14:596–603.

    Article  PubMed  Google Scholar 

  7. Buysse CM, de Jongsgte JC, de Hoog M. Life-threatening asthma in children: treatment with sodium bicarbonate reduces PCO2. Chest. 2005;127:866–70.

    Article  CAS  PubMed  Google Scholar 

  8. Berenyi KJ, Wolk M, Killip T. Cerebrospinal fluid acidosis complicating therapy of experimental cardiopulmonary arrest. Circulation. 1975;52:319–24.

    Article  CAS  PubMed  Google Scholar 

  9. Steenbergen C, Deleeuw G, Rich T, Williamson JR. Effects of acidosis and ischemia on contractility and intracellular pH of rat heart. Circ Res. 1977;41:849–58.

    Article  CAS  PubMed  Google Scholar 

  10. Clancy RL, Cingolani HE, Taylor RR, Graham Jr TP, Gilmore JP. Influence of sodium bicarbonate on myocardial performance. Am J Physiol. 1967;212:917–23.

    CAS  PubMed  Google Scholar 

  11. Gazmuri RJ, von Planta M, Weil MW, Rackow EC. Cardiac effects of carbon dioxide-consuming and carbon dioxide-generating buffers during cardiopulmonary resuscitation. J Am Coll Cardiol. 1990;15:482–90.

    Article  CAS  PubMed  Google Scholar 

  12. Kette F, Weil MH, von Planta M, Gazmuri RJ, Rackow EC. Buffer agents do not reverse intramyocardial acidosis during cardiac resuscitation. Circulation. 1990;81:1660–6.

    Article  CAS  PubMed  Google Scholar 

  13. Ostrea Jr EM, Odell GB. The influence of bicarbonate administration on blood pH in a “closed system”: clinical implications. J Pediatr. 1972;80:671–80.

    Article  CAS  PubMed  Google Scholar 

  14. Bishop RL, Weisdeldt ML. Sodium bicarbonate administration during cardiac arrest. Effect on arterial pH, PCO2, and osmolality. JAMA. 1976;235:506–9.

    Article  CAS  PubMed  Google Scholar 

  15. Carroll GC. Effect of alkalinization and fluids on survival in acute, non-hypoxic respiratory acidosis. Resuscitation. 1990;19:253–70.

    Article  CAS  PubMed  Google Scholar 

  16. Kallet RH, Liu K, Tang J. Management of acidosis during lung-protective ventilation in acute respiratory distress syndrome. Respir Clin N Am. 2003;9:437–56.

    Article  Google Scholar 

  17. Foster GT, Vaziri ND, Sassoon CSH. Respiratory alkalosis. Respir Care. 2001;46:384–91.

    CAS  PubMed  Google Scholar 

  18. Swenson ER. Metabolic acidosis. Respir Care. 2001;46:342–53.

    CAS  PubMed  Google Scholar 

  19. Hatherill M, Waggie Z, Purves L, Reynolds L, Argent A. Correction of the anion gap for albumin in order to detect occult tissue anions in shock. Arch Dis Child. 2002;87:526–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Durward A, Mayer A, Skellett S, et al. Hypoalbuminaemia in critically ill children: incidence, prognosis, and influence on the anion gap. Arch Dis Child. 2003;88:419–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Figge J, Jabor A, Kazda A, Fencl V. Anion gap and hypoalbuminemia. Crit Care Med. 1998;26:1807–10.

    Article  CAS  PubMed  Google Scholar 

  22. Fencl V, Jabor A, Kazda A, Figge J. Diagnosis of metabolic acid-base disturbances in critically ill patients. Am J Respir Crit Care Med. 2000;162:2246–51.

    Article  CAS  PubMed  Google Scholar 

  23. Mizock BA, Falk JL. Lactic acidosis in critical illness. Crit Care Med. 1992;20:80–93.

    Article  CAS  PubMed  Google Scholar 

  24. Duke T. Dysoxia and lactate. Arch Dis Child. 1999;81:343–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cohen RD, Woods HF. Clinical and biochemical aspects of lactic acidosis. Boston: Blackwell Scientific Publications; 1976.

    Google Scholar 

  26. Hindman BJ. Sodium bicarbonate in the treatment of subtypes of acute lactic acidosis: physiologic considerations. Anesthesiology. 1990;72:1064–76.

    Article  CAS  PubMed  Google Scholar 

  27. Levraut J, Ciebiera J-P, Chave S, et al. Mild hyperlactatemia in stable septic patients is due to impaired lactate clearance rather than overproduction. Am J Respir Crit Care Med. 1998;157:1021–6.

    Article  CAS  PubMed  Google Scholar 

  28. Suistomaa M, Ruokonen E, Kari A, Takala J. Time-pattern of lactate and lactate to pyruvate ratio in the first 24 hours of intensive care emergency admissions. Shock. 2000;14:8–12.

    Article  CAS  PubMed  Google Scholar 

  29. Levy B, Sadoune LO, Gelot AM, Bollaert PE, Nabet P, Larcan A. Evolution of lactate/pyruvate ratio and arterial ketone body ratios in the early course of catecholamine-treated septic shock. Crit Care Med. 2000;28:114–9.

    Article  CAS  PubMed  Google Scholar 

  30. Dugas MA, Proulx F, de Jaeger A, Lacroix J, Lambert M. Markers of tissue hypoperfusion in pediatric septic shock. Intensive Care Med. 2000;26:75–83.

    Article  CAS  PubMed  Google Scholar 

  31. Bilkovski RN, Rivers EP, Horst HM. Targeted resuscitation strategies after injury. Curr Opin Crit Care. 2004;10:529–38.

    Article  PubMed  Google Scholar 

  32. Tisherman SA, Barie P, Bokhari F, et al. Clinical practice guideline: endpoints of resuscitation. J Trauma. 2004;57:898–912.

    Article  PubMed  Google Scholar 

  33. Wade CE, Holcomb JB. Endpoints in clinical trials of fluid resuscitation of patients with multiple injuries. Transfusion. 2005;45:4S–8.

    Article  PubMed  Google Scholar 

  34. Fall PJ, Szerlip HM. Lactic acidosis: from sour milk to septic shock. J Intensive Care Med. 2005;20:255–71.

    Article  PubMed  Google Scholar 

  35. Vincent JL, Dufaye P, Berre J, Leeman M, Degaute JP, Kahn RJ. Serial lactate determinations during circulatory shock. Crit Care Med. 1983;11:449–51.

    Article  CAS  PubMed  Google Scholar 

  36. Abramson D, Scalea TM, Hitchcock R, Trooskin SZ, Henry SM, Greenspan J. Lactate clearance and survival following injury. J Trauma. 1993;35:584–9.

    Article  CAS  PubMed  Google Scholar 

  37. McNelis J, Marini CP, Jurkiewicz A, et al. Prolonged lactate clearance is associated with increased mortality in the surgical intensive care unit. Am J Surg. 2001;182:481–5.

    Article  CAS  PubMed  Google Scholar 

  38. Manikis P, Jankowski S, Zhang H, Kahn RJ, Vincent JL. Correlation of serial blood lactate levels to organ failure and mortality after trauma. Am J Emerg Med. 1995;13:619–22.

    Article  CAS  PubMed  Google Scholar 

  39. Mikulaschek A, Henry SM, Donovan R, Scalea TM. Serum lactate is not predicted by anion gap or base excess after trauma resuscitation. J Trauma. 1996;40:218–24.

    Article  CAS  PubMed  Google Scholar 

  40. Bakker J, Coffernils M, Leon M, Gris P, Vincent JL. Blood lactate levels are superior to oxygen-derived variables in predicting outcome in human septic shock. Chest. 1991;99:956–62.

    Article  CAS  PubMed  Google Scholar 

  41. Friedman G, Berlot G, Kahn RJ, Vincent JL. Combined measurements of blood lactate concentrations and gastric intramucosal pH in patients with severe sepsis. Crit Care Med. 1995;23:1184–93.

    Article  CAS  PubMed  Google Scholar 

  42. Hayes MA, Timmins AC, Yau EH, Palazzo M, Watson D, Hinds CJ. Oxygen transport patterns in patients with sepsis syndrome or septic shock: influence of treatment and relationship to outcome. Crit Care Med. 1997;25:926–36.

    Article  CAS  PubMed  Google Scholar 

  43. Nguyen HB, Rivers EP, Knoblich BP, et al. Early lactate clearance is associated with improved outcome in severe sepsis and septic shock. Crit Care Med. 2004;32:1637–42.

    Article  PubMed  Google Scholar 

  44. Poeze M, Solberg BC, Greve JW, Ramsay G. Monitoring global volume-related hemodynamic or regional variables after initial resuscitation: what is a better predictor of outcome in critically ill septic patients? Crit Care Med. 2005;33:2494–500.

    Article  PubMed  Google Scholar 

  45. Krafte-Jacobs B, Carver J, Wilkinson JD. Comparison of gastric intramucosal pH and standard perfusional measurements in pediatric septic shock. Chest. 1995;108:220–5.

    Article  CAS  PubMed  Google Scholar 

  46. Duke TD, Butt W, South M. Predictors of mortality and multiple organ failure in children with sepsis. Intensive Care Med. 1997;23:684–92.

    Article  CAS  PubMed  Google Scholar 

  47. Hatherill M, Waggie Z, Purves L, Reynolds L, Argent A. Mortality and the nature of metabolic acidosis in children with shock. Intensive Care Med. 2003;29:286–91.

    Article  PubMed  Google Scholar 

  48. Siegel LB, Dalton HJ, Hertzog JH, Hopkins RA, Hannan RL, Hauser GJ. Initial postoperative serum lactate levels predict survival in children after open heart surgery. Intensive Care Med. 1996;22:1418–23.

    Article  CAS  PubMed  Google Scholar 

  49. Cheifetz IM, Kern FH, Schulman SR, Greeley WJ, Underleider RM, Meliones JN. Serum lactates correlate with mortality after operations for complex congenital heart disease. Ann Thorac Surg. 1997;64:735–8.

    Article  CAS  PubMed  Google Scholar 

  50. Duke T, Butt W, South M, Karl KR. Early markers of major adverse events in children after cardiac operations. J Thorac Cardiovasc Surg. 1997;114:1042–52.

    Article  CAS  PubMed  Google Scholar 

  51. Charpie JR, Dekeon MK, Goldberg CS, Mosca RS, Bove EL, Kulik TJ. Serial blood lactate measurements predict early outcome after neonatal repair or palliation for complex congenital heart disease. J Thorac Cardiovasc Surg. 2000;120:73–80.

    Article  CAS  PubMed  Google Scholar 

  52. Munoz R, Laussen PC, Palacio G, Zienko L, Piercey G, Wessel DL. Changes in whole blood lactate levels during cardiopulmonary bypass for surgery for congenital cardiac disease: an early indicator of morbidity and mortality. J Thorac Cardiovasc Surg. 2000;119:155–62.

    Article  CAS  PubMed  Google Scholar 

  53. Boigner H, Brannath W, Hermon M, et al. Predictors of mortality at initiation of peritoneal dialysis in children after cardiac surgery. Ann Thorac Surg. 2004;77:61–5.

    Article  PubMed  Google Scholar 

  54. Hannan RL, Ybarra MA, White JA, Ojito JW, Rossi AF, Burke RP. Patterns of lactate values after congenital heart surgery and timing of cardiopulmonary support. Ann Thorac Surg. 2005;80:1468–74.

    Article  PubMed  Google Scholar 

  55. Robergs RA, Ghiasvand F, Parker D. Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol. 2004;287:R502–16.

    Article  CAS  PubMed  Google Scholar 

  56. Forsythe SM, Schmidt GA. Sodium bicarbonate for the treatment of lactic acidosis. Chest. 2000;117:260–7.

    Article  CAS  PubMed  Google Scholar 

  57. Levraut J, Grimaud D. Treatment of metabolic acidosis. Curr Opin Crit Care. 2003;9:260–5.

    Article  PubMed  Google Scholar 

  58. Okuda Y, Adrogue HJ, Field JB, Nohara H, Yamashita K. Counterproductive effects of sodium bicarbonate in diabetic ketoacidosis. J Clin Endocrinol Metab. 1996;81:314–20.

    CAS  PubMed  Google Scholar 

  59. Glaser N, Barnett P, McCaslin I, et al. Risk factors for cerebral edema in children with diabetic ketoacidosis. The Pediatric Emergency Medicine Collaborative Research Committee of the American Academy of Pediatrics. N Engl J Med. 2001;344:264–9.

    Article  CAS  PubMed  Google Scholar 

  60. Kellum JA, Bellomo R, Kramer DJ, Pinsky MR. Etiology of metabolic acidosis during saline resuscitation in endotoxemia. Shock. 1998;9:364–8.

    Article  CAS  PubMed  Google Scholar 

  61. Stephens RC, Mythen MG. Saline-based fluids can cause a significant acidosis that may be clinically relevant. Crit Care Med. 2000;28:3375–7.

    Article  CAS  PubMed  Google Scholar 

  62. Skellett S, Mater A, Durward A, Tibby SM, Murdoch IA. Chasing the base deficit: hyperchloraemic acidosis following 0.9% saline fluid resuscitation. Arch Dis Child. 2000;83:514–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hatherill M, Salie S, Waggie Z, et al. Hyperchloraemic metabolic acidosis following open cardiac surgery. Arch Dis Child. 2005;90:1288–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Khanna A, Kurtzman NA. Metabolic alkalosis. Respir Care. 2001;46:354–65.

    CAS  PubMed  Google Scholar 

  65. Kraut JA, Madias NE. Approach to patients with acid-base disorders. Respir Care. 2001;46:392–403.

    CAS  PubMed  Google Scholar 

  66. Whittier WL, Rutecki GW. Primer on clinical acid-base problem solving. Dis Mon. 2004;50:122–62.

    Article  PubMed  Google Scholar 

  67. Swan H. The hydroxyl-hydrogen ion concentration ratio during hypothermia. Surg Gynecol Obstet. 1982;155:897–912.

    CAS  PubMed  Google Scholar 

  68. Rosenthal TB. The effect of temperature on the pH of blood and plasma in vitro. J Biol Chem. 1948;173:25–30.

    CAS  PubMed  Google Scholar 

  69. Albery RA, Lloyd BB. Variation of chemical potential with temperature. In: DeReuck AVS, Porter R, editors. Development of the lung. London: Churchil; 1967. p. 30–3.

    Google Scholar 

  70. Reeves RB. An imidazole alpha-stat hypothesis for vertebrate acid-base regulation: tissue carbon dioxide content and body temperature in bullfrogs. Respir Physiol. 1972;14:219–36.

    Article  CAS  PubMed  Google Scholar 

  71. Swain JA. Hypothermia and blood pH. Arch Intern Med. 1988;148:1643–6.

    Article  CAS  PubMed  Google Scholar 

  72. Scallan MJH. Brain injury in children with congenital heart disease. Paediatr Anaesth. 2003;13:284–93.

    Article  PubMed  Google Scholar 

  73. Laussen PC. Optimal blood gas management during deep hypothermic paediatric cardiac surgery: alpha-stat is easy, but pH-stat maybe preferable. Paediatr Anaesth. 2002;12:199–204.

    Article  PubMed  Google Scholar 

  74. Kern FH, Greeley WJ. Pro: pH-stat management of blood gases is not preferable to alpha-stat in patients undergoing brain cooling for cardiac surgery. J Cardiothorac Vasc Anesth. 1995;9:215–8.

    Article  CAS  PubMed  Google Scholar 

  75. Burrows FA. Con: pH-stat management of blood gases is preferable to alpha-stat in patients undergoing brain cooling for cardiac surgery. J Cardiothorac Vasc Anesth. 1995;9:219–21.

    Article  CAS  PubMed  Google Scholar 

  76. Swan H. The importance of acid-base management for cardiac and cerebral preservation during open heart operations. Surg Gynecol Obstet. 1984;158:391–414.

    CAS  PubMed  Google Scholar 

  77. Nussmeir NA, Carolee A, Sloghoff S. Neuropsychiatric complications after cardiopulmonary bypass: cerebral protection by barbiturates. Anesthesiology. 1986;64:165–70.

    Article  Google Scholar 

  78. Sloghoff S, Girgis KZ, Keats AS. Etiologic factors in neuropsychiatric complications associated with cardiopulmonary bypass. Anesth Analg. 1982;61:903–11.

    Google Scholar 

  79. DuPlessis AJ, Jonas RA, Wypij D, et al. Perioperative effects of alpha-stat versus pH-stat strategies for deep hypothermic cardiopulmonary bypass in infants. J Thorac Cardiovasc Surg. 1997;114:991–1001.

    Article  CAS  Google Scholar 

  80. Bellinger DC, Wypij D, DuPlessis AJ, et al. Developmental and neurologic effects of alpha-stat versus pH-stat strategies for deep hypothermic cardiopulmonary bypass in infants. J Thorac Cardiovasc Surg. 2001;121:374–83.

    Article  CAS  PubMed  Google Scholar 

  81. Nichol AD, O’Cronin DF, Naughton F, Hopkins N, Boylan J, McLoughlin P. Hypercapnic acidosis reduces oxidative reactions in endotoxin-induced lung injury. Anesthesiology. 2010;113(1):116–25.

    Article  CAS  PubMed  Google Scholar 

  82. Dreyfuss D, Saumon G. From ventilator-induced lung injury to multiple organ dysfunction? Intensive Care Med. 1998;24:102–4.

    Article  CAS  PubMed  Google Scholar 

  83. Ricard JD, Dreyfuss D, Saumon G. Ventilator-induced lung injury. Curr Opin Crit Care. 2002;8:12–20.

    Article  PubMed  Google Scholar 

  84. Slutsky AS, Tremblay LN. Multiple system organ failure. Is mechanical ventilation a contributing factor? Am J Respir Crit Care Med. 1998;157:1721–5.

    Article  CAS  PubMed  Google Scholar 

  85. Tremblay LN, Slutsky AS. Ventilator-induced injury: from barotrauma to biotrauma. Proc Assoc Am Physicians. 1998;110:482–8.

    CAS  PubMed  Google Scholar 

  86. Ricard JD, Dreyfuss D. Cytokines during ventilator-induced lung injury: a word of caution. Anesth Analg. 2001;93:251–2.

    CAS  PubMed  Google Scholar 

  87. Dreyfuss D, Ricard JD, Saumon G. On the physiologic and clinical relevance of lung-borne cytokines during ventilator induced lung injury. Am J Respir Crit Care Med. 2003;167:1467–71.

    Article  PubMed  Google Scholar 

  88. Edmonds JF, Berry E, Wyllie JH. Release of prostaglandins caused by distension of the lungs. Br J Surg. 1969;56:622–3.

    CAS  PubMed  Google Scholar 

  89. Tremblay L, Valenza F, Ribeiro SP, Li J, Slutsky AS. Injurious ventilator strategies increase cytokines and c-fos mRNA expression in an isolated rat lung model. J Clin Invest. 1997;99:944–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Murphy DB, Cregg N, Tremblay L, Engelberts D, Laffey JG, Slutsky AS, Romaschin A, Kavanagh BP. Adverse ventilator strategy causes pulmonary to systemic translocation of endotoxin. Am J Respir Crit Care Med. 2000;162:27–33.

    Article  CAS  PubMed  Google Scholar 

  91. O’Toole D, Hassett P, Contreras M, Higgins BD, McKeown ST, McAuley DF, O’Brien T, Laffey JG. Hypercapnic acidosis attenuates pulmonary epithelial wound repair by an NF-kappaB dependent mechanism. Thorax. 2009;64:976–82.

    Article  PubMed  Google Scholar 

  92. Nilsson MC, Fredén F, Larsson A, Wiklund P, Bergquist M, Hambraeus-Jonzon K. Hypercapnic acidosis transiently weakens hypoxic pulmonary vasoconstriction without affecting endogenous pulmonary nitric oxide production. Intensive Care Med. 2012;38:509–17.

    Article  CAS  PubMed  Google Scholar 

  93. O’Croinin D, Ni Chonghaile M, Higgins B, Laffey JG. Bench-to-bedside review: permissive hypercapnia. Crit Care. 2005;9:51–9.

    Article  PubMed  Google Scholar 

  94. Mann C, Held U, Hrzog S, Baenziger J. Impact of normal saline infusion on postoperative metabolic acidosis. Paediatr Anaesth. 2009;19:1070–7.

    Article  PubMed  Google Scholar 

  95. Park CM, Chun HK, Jeon K, Suh GY, Choi DW, Kim S. Factors related to post-operative metabolic acidosis following major abdominal surgery. ANZ J Surg. 2012. doi: 10.1111/j.1445-2197.2012.06235.x. Epub ahead of print.

  96. Shaw AD, Bagshaw SM, Goldstein SL, Scherer LA, Duan M, Schermer CR, Kellum JA. Major complications, mortality, and resource utilization after open abdominal surgery: 0.9% saline compared to Plasma-Lyte. Ann Surg. 2012;255:821–9.

    Article  PubMed  Google Scholar 

  97. McFarlane C, Lee A. A comparison of Plasmalyte 148 and 0.9% saline for intra-operative fluid replacement. Anaesthesia. 1994;49:779–81.

    Article  CAS  PubMed  Google Scholar 

  98. Mahler SA, Conrad SA, Wang H, Arnold TC. Resuscitation with balanced electrolyte solution prevents hyperchloremic metabolic acidosis in patients with diabetic ketoacidosis. Am J Emerg Med. 2011;29:670–4.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James D. Fortenberry MD, MCCM, FAAP .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Fortenberry, J.D., Hebbar, K., Wheeler, D.S. (2014). Acid-Base Disorders in the PICU. In: Wheeler, D., Wong, H., Shanley, T. (eds) Pediatric Critical Care Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-6416-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6416-6_14

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6415-9

  • Online ISBN: 978-1-4471-6416-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics