Skip to main content

Hydrogels for Healing

  • Chapter
Hydrogels

Abstract

Hydrogels are widely used in medicine and offer advantages in many implant situations. However, the body responds to them as with any other material — by walling them off in a foreign body capsule. We show here that by making hydrogels with uniform, interconnected spherical pores of about 35 microns, the healing reaction can be shifted to one of vascularization and little fibrosis. We have also developed a biodegradable form of poly(2-hydroxyethyl methacrylate) that can be used to fabricate these pro-healing, spherically pored materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185:117–118

    Article  Google Scholar 

  2. Anderson JM, Rodriguez A, Chang DT (2008) Foreign body reaction to biomaterials. Seminars in Immunology 20:86–100

    Article  CAS  Google Scholar 

  3. Atzet S, Curtin S, Trinh P, Bryant S, Ratner B (2008) Degradable poly(2-hydroxyethyl methacrylate)-co-polycaprolactone hydrogels for tissue engineering scaffolds. Biomacromolecules, doi: 10.1021/bm800686h

    Google Scholar 

  4. Brand KG, Buoen LC, Johnson KH, Brand I (1975) Etiological factors, stages and the role of the foreign body in foreign body tumorigenesis: a review. Cancer Res 35:279–286

    CAS  Google Scholar 

  5. Picha GJ, Siedlak DJ (1984) Ion-beam microtexturing of biomaterials. MD & DI 6(4): 39–42

    CAS  Google Scholar 

  6. Clowes AW, Kirkman TR, Reidy MA (1986) Mechanisms of arterial graft healing-rapid transmural capillary ingrowth provides a source of intimal endothelium and smooth muscle in porous PTFE prostheses. Am J Path 123(2):220–230

    CAS  Google Scholar 

  7. Brauker JH, Carr-Brendel VE, Martinson LA, Crudele J, Johnston WD, Johnson RC (1995) Neovascularization of synthetic membranes directed by membrane microarchitecture. J Biomed Mater Res 29:1517–1524

    Article  CAS  Google Scholar 

  8. Sharkawy AA, Klitzman B, Truskey GA, Reichert WM (1997) Engineering the tissue which encapsulates subcutaneous implants. I. diffusion properties. J Biomed Mater Res 37:401–412

    Article  CAS  Google Scholar 

  9. Marshall AJ, Irvin CA, Barker T, Sage EH, Hauch KD, Ratner BD (2004) Biomaterials with tightly controlled pore size that promote vascular in-growth. ACS Polymer Preprints 45(2): 100–101

    CAS  Google Scholar 

  10. Isenhath SN, Fukano Y, Usui ML, Underwood RA, Irvin CA, Marshall AJ, Hauch KD, Ratner BD, Fleckman P, Olerud JE (2007) A mouse model to evaluate the interface between skin and a percutaneous device. J Biomed Mater Research A 83:915–922

    Article  CAS  Google Scholar 

  11. Khelfallah NS, Decher G, Mesini PJ (2007) Design, synthesis, and degradation studies of new enzymatically erodible poly(hydroxyethyl methacrylate)/poly(ethylene oxide) hydrogels. Biointerphases 2(4): 131–135

    Article  CAS  Google Scholar 

  12. Bolgen N, Yang Y, Korkusuz P, Guzel E, El Haj AJ, Piskin E (2008) Three-dimensional ingrowth of bone cells within biodegradable cryogel scaffolds in bioreactors at different regimes. Tissue Engineering A 14:1743–1750

    Article  Google Scholar 

  13. Van Thienen TG, Lucas B, Flesch FM, van Nostrum CF, Demeester J, De Smedt SC (2005) On the synthesis and characterization of biodegradable dextran nanogels with tunable degradation properties. Macromolecules 38(20):8503–8511

    Article  Google Scholar 

  14. Lim DW, Choi SH, Park TG (2000) A new class of biodegradable hydrogels stereocomplexed by enantiomeric oligo (lactide) side chains of poly(HEMA-g-OLA)s. Macromol Rapid Commun 21:464–471

    Article  CAS  Google Scholar 

  15. He B, Wan E, Chan-Park MB (2006) Synthesis and Degradation of Biodegradable Photo-Cross-Linked Poly (a,β-malic acid)-Based Hydrogel. Chem. Mater 18:3946–3955

    Article  CAS  Google Scholar 

  16. Matyjaszewski K, Xia J (2001) Atom transfer radical polymerization. Chem Rev 101(9):2921–2990

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Italia, Milan

About this chapter

Cite this chapter

Ratner, B.D., Atzet, S. (2009). Hydrogels for Healing. In: Hydrogels. Springer, Milano. https://doi.org/10.1007/978-88-470-1104-5_5

Download citation

Publish with us

Policies and ethics