Skip to main content

Orientation in Migrating Animals: Role of Biological Clocks

  • Chapter
  • First Online:
Biological Timekeeping: Clocks, Rhythms and Behaviour
  • 2597 Accesses

Abstract

How migrating animals find their direction to reach migratory destination is an important question of wildlife migration. Animals use a variety of geophysical cues such as the sun compass, stellar constellation, and geomagnetic field of the Earth to accomplish this feat. Endogenous clocks facilitate, to some extent, the challenge of heading toward the right direction. Whereas extensive body of research has focused on the biophysical and neurobiological mechanisms, relatively less is known of the extent of involvement of biological clocks in the migratory orientation. Studies on the innate capability of first year migrants and experimentally displaced experienced migrants to correctly reach their destination indicate that an endogenous time program controls spontaneous changes during the course of migratory journey. Here, we intend to briefly summarize the orientation studies in animals, with emphasis placed on the role of biological clocks in the avian orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Drost R (1938) U¨ ber den Einfluss von Verfrachtungen zur Herbstzugszeit auf den Sperber, Accipiter nisus (L.). Proc Int Ornithol Congr 9:502–521

    Google Scholar 

  2. Emlen ST (1970) Celestial rotation: its importance in development of migratory orientation. Science 170:1198–1201

    Article  CAS  PubMed  Google Scholar 

  3. Lack D (1950) The breeding seasons of European birds. Ibis 92(2):288–316

    Article  Google Scholar 

  4. Able KP, Bingman VP (1987) The development of orientation and navigation behavior in birds. Q Rev Biol 62:1–29

    Article  Google Scholar 

  5. Mott CR, Salmon M (2011) Sun compass orientation by juvenile green sea turtles (Chelonia mydas). Chelonian Conserv Biol 10(1):73–81

    Article  Google Scholar 

  6. Alcock J (2009) Animal behavior: an evolutionary approach. Sinauer Assoc 5:140–143

    Google Scholar 

  7. Dacke M, el Jundi B, Smolka J, Byrne M, Baird E (2014) The role of the sun in the celestial compass of dung beetles. Philos Trans R Soc B Biol Sci 369(1636):20130036. doi:10.1098/rstb.2013.0036

    Article  CAS  Google Scholar 

  8. Muheim R, Phillips JB, Akesson S (2006) Polarized light cues underlie compass calibration in migratory songbirds. Science 313(5788):837–839

    Article  CAS  PubMed  Google Scholar 

  9. Muheim R, Phillips JB, Deutschlander ME (2009) White-throated sparrows calibrate their magnetic compass by polarized light cues during both autumn and spring migration. J Exp Biol 212:3466–3472

    Article  PubMed  Google Scholar 

  10. Åkesson S, Odin C, Hegedüs R (2015) Testing avian compass calibration: comparative experiments with diurnal and nocturnal passerine migrants in south Sweden. Biol Open 4(1):35–47

    Article  Google Scholar 

  11. Wiltschko R, Munro UH, Ford H, Wiltschko W (2008) Contradictory results on the role of polarized light in compass calibration in migratory songbirds. J Ornithol 149(4):607–614

    Article  Google Scholar 

  12. Gaggini V, Baldaccini NE, Spina F, Giunchi D (2010) Orientation of the pied flycatcher Ficedula hypoleuca cue-conflict experiments during spring migration. Behav Ecol Sociobiol 64(8):1333–1342

    Article  Google Scholar 

  13. Chernetsov N, Kishkinev D, Kosarev V, Bolshakov CV (2011) Not all songbirds calibrate their magnetic compass from twilight cues: a telemetry study. J Exp Biol 214:2540–2543

    Article  PubMed  Google Scholar 

  14. Schmaljohann H, Rautenberg T, Muheim R, Naef-Daenzer B, Bairlein F (2013) Response of a free-flying songbird to an experimental shift of the light polarization pattern around sunset. J Exp Biol 216:1381–1387

    Article  PubMed  Google Scholar 

  15. Wiltschko W, Wiltschko R (1975) The interactions of stars and magnetic field in the orientation system of night migrating birds. I. Autumn experiments with European warblers (Gen. Sylvia). Z Tierpsychol 37:337–355

    Article  CAS  PubMed  Google Scholar 

  16. Prinz K, Wiltschko W (1992) Migratory orientation of pied flycatchers: interaction of stellar and magnetic information during ontogeny. Anim Behav 44:539–545

    Article  Google Scholar 

  17. Emlen ST (1975) Migration: orientation and navigation. In: Farner DS, King JR (eds) Avian biology, vol 5. Academic, New York, pp 129–219

    Chapter  Google Scholar 

  18. Berthold P, Helbig AJ (1992) The genetics of bird migration: stimulus, timing, and direction. Ibis 134(Suppl I):35–40

    Google Scholar 

  19. Helbig AJ (1991) Inheritance of migratory direction in a bird species: a cross-breeding experiment with SE- and SW-migrating blackcaps (Sylvia atricapilla). Behav Ecol Sociobiol 28(1):9–12

    Article  Google Scholar 

  20. Bingman VP, Able KP, Kerlinger P (1982) Wind drift, compensation, and the use of landmarks by nocturnal bird migrants. Anim Behav 30(1):49–53

    Article  Google Scholar 

  21. Marchetti C, Baldaccini NE (1997) The role of the moon in the migratory orientation of passerine birds. In: Orientation and navigation: birds, humans and other animals. The Royal Institute of Navigation, London, paper 13

    Google Scholar 

  22. Marchetti C, Giusti P, van Noordwijk AJ, Baldaccini NE (2001) Light thresholds may explain moon experiments with passerine birds in Emlen funnels. In: RIN 01, Orientation and navigation: birds, humans and other animals. The Royal Institute of Navigation, London, paper 44

    Google Scholar 

  23. Papi F (1990) Olfactory navigation in birds. Experientia 46:352–363

    Article  Google Scholar 

  24. Max Planck Institute for Ornithology (2010) Birds follow their noses during migration. Science daily www.sciencedaily.com/releases/2010/01/100127110423.htm

  25. Richardson WJ (1990) Wind and orientation of migrating birds: a review. Experientia 46(4):416–425

    Article  Google Scholar 

  26. Kirschvink JL, Winklhofer M, Walker MM (2010) Biophysics of magnetic orientation: strengthening the interface between theory and experimental design. J R Soc Interface 7:S179–S191

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ritz T, Ahmad M, Mouritsen H, Wiltschko R, Wiltschko W (2010) Photoreceptor-based magnetoreception: optimal design of receptor molecules, cells, and neuronal processing. J R Soc Interface 7:S135–S146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Johnsen S, Lohmann KJ (2005) The physics and neurobiology of magnetoreception. Nat Rev 6:703–712

    Article  CAS  Google Scholar 

  29. Lohmann KJ, Johnsen S (2000) The neurobiology of magnetoreception in vertebrate animals. Trends Neurosci 23:153–159

    Article  CAS  PubMed  Google Scholar 

  30. Solov’yov IA, Greiner W (2007) Theoretical analysis of an iron mineral-based magnetoreceptor model in birds. Biophys J 93(5):1493–1509

    Article  PubMed  PubMed Central  Google Scholar 

  31. Delmore KE, Liedvogel M (2016) Investigating factors that generate and maintain variation in migratory orientation: a primer for recent and future work. Front Behav Neurosci 10:3, http://doi.org/10.3389/fnbeh.2016.00003

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kramer G, St. Paul U (1950) Stare, (Sturnus vulgaris) lassen sich auf Himmelsrichtungen dressieren. Naturwissenschaften 37:526–527

    Article  Google Scholar 

  33. Hoffmann K (1954) Versuche zu der im Richtungsfinden der Vogel enthaltenen Zeitschatzung. Z Tierpsychol 11:453–475

    Article  Google Scholar 

  34. Gwinner E, Wiltschko W (1978) Endogenously controlled changes in migratory direction of the garden warbler, Sylvia borin. J Comp Physiol 125(3):267–273

    Article  Google Scholar 

  35. Able KP, Able MA (1998) The roles of innate information, learning rules and plasticity in migratory bird orientation. J Navig 51:1–9

    Article  Google Scholar 

  36. Schneider T, Thalau HP, Semm P, Wiltschko W (1994) Melatonin is crucial for the migratory orientation of pied flycatchers (Ficedula hypoleuca pallas). J Exp Biol 194:255–262

    CAS  PubMed  Google Scholar 

  37. Mouritsen H, Janssen-Bienhold U, Liedvogel M, Feenders G, Stalleicken J, Dirks P, Weiler R (2004) Cryptochromes and neuronal-activity markers colocalize in the retina of migratory birds during magnetic orientation. Proc Natl Acad Sci 101(39):14294–14299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Deutschlander ME, Phillips JB, Borland SC (1999) The case for light-dependent magnetic orientation in animals. J Exp Biol 202:891–908

    PubMed  Google Scholar 

  39. Brown RL, Robinson PR (2004) Melanopsin-shedding light on the elusive circadian photopigment. Chronobiol Int 21(2):189–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Figueiro MG, Bullough JD, Parsons RH, Rea MS (2004) Preliminary evidence for spectral opponency in the suppression of melatonin by light in humans. Neuroreport 15:313–316

    Article  CAS  PubMed  Google Scholar 

  41. Wiltschko W, Traudt J, Gunturkun O, Prior H, Wiltschko R (2002) Lateralization of magnetic compass orientation in a migratory bird. Nature 419:467–470

    Article  CAS  PubMed  Google Scholar 

  42. Wiltschko W, Wiltschko R (1976) Interrelation of magnetic compass and star orientation in night-migrating birds. J Comp Physiol 109(1):91–99

    Article  Google Scholar 

  43. Wiltschko R, Wiltschko W (2003) Mechanism for orientation and navigation in migratory birds. In: Berthold P, Gwinner E, Sonnenschein E (eds) Avian migration. Springer, Berlin, pp 433–456

    Chapter  Google Scholar 

  44. Perdeck AC (1958) Two types of orientation in migrating starlings Sturnus vulgaris L., and chaffinches Fringilla coelebs L., as revealed by displacement experiments. Ardea 46:1–37

    Google Scholar 

  45. Mewaldt LR (1964) California sparrows return from displacement to Maryland. Science 146:941–942

    Article  CAS  PubMed  Google Scholar 

  46. Bowlin MS, Cochran WW, Wikelski MC (2005) Biotelemetry of new world thrushes during migration: physiology, energetics and orientation in the wild. Integr Comp Biol 45:295–304

    Article  PubMed  Google Scholar 

  47. Thorup K, Bisson I, Bowlin MS, Holland R, Wingfield JC, Ramenofsky M, Wikelski M (2007) Evidence for a navigational map stretching across the continental U.S. in a migratory songbird. Proc Natl Acad Sci 104(46):18115–18119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Emlen ST, Emlen JT (1966) A technique for recording migratory orientation in captive birds. Auk 83:361–367

    Article  Google Scholar 

  49. Busse P (1995) New technique of a field study of directional preferences of night passerine migrants. Ring 17:97–116

    Google Scholar 

  50. Thienemann J (1931) VomVogelzuge in Rossitten. J. Neumann, Neudamm

    Google Scholar 

  51. Schüz E (1950) Früh-Auflassung ostpreussischer Jungstörche in West-Deutschland durch die VogelwarteRossitten 1933–1936. Bonner Zool Beitr 1:239–253

    Google Scholar 

  52. Chernetsov N, Berthold P, Querner U (2004) Migratory orientation of first-year white storks (Ciconia ciconia): inherited information and social interactions. J Exp Biol 207:937–943

    Article  PubMed  Google Scholar 

  53. Willemoes M, Blas J, Wikelski M, Thorup K (2015) Flexible navigation response in common cuckoos Cuculus canorus displaced experimentally during migration. Sci Rep 5:16402. doi:10.1038/srep16402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mouritsen H, Mouritsen O (2000) A mathematical expectation model for bird navigation based on the clock-and-compass strategy. J Theor Biol 60:283–291

    Article  Google Scholar 

  55. Luschi P (2013) Long-distance animal migrations in the oceanic environment: orientation and navigation correlates. ISRN Zool. Article ID 631839. http://dx.doi.org/10.1155/2013/631839

  56. Boles LC, Lohmann KJ (2003) True navigation and magnetic maps in spiny lobsters. Nature 421:60–63

    Article  CAS  PubMed  Google Scholar 

  57. Chapman JW, Nesbit RL, Burgin LE, Reynolds DR, Smith AD, Middleton DR, Hill JK (2010) Flight orientation behaviors promote optimal migration trajectories in high-flying insects. Science 327:682

    Article  CAS  PubMed  Google Scholar 

  58. Cardé RT (2008) Insect migration: do migrant moths know where they are heading? Curr Biol 18(11):R472–R474. doi:10.1016/j.cub.2008.04.018

    Article  PubMed  Google Scholar 

  59. Gilbert CH, Rich WH (1927) Second experiment in tagging salmon in the Alaska Peninsula fisheries reservation, summer of 1923. Fish Bull US 42:27–75

    Google Scholar 

  60. Wisby WJ, Hasler AD (1954) Effect of olfactory occlusion on migrating silver salmon (0. kisutch). J Fish Res Board Can 11(4):472–478

    Article  Google Scholar 

  61. Fraser NHC, Metcalfe NB, Thorpe JE (1993) Temperature-dependent switch between diurnal and nocturnal foraging in Salmon. Proc R Soc Lond B252:135–139

    Article  Google Scholar 

  62. Putman NF, Scanlan MM, Billman EJ, O’Neil JP, Couture RB, Quinn TP, Lohmann KJ, Noakes DLG (2014) An inherited magnetic map guides ocean navigation in juvenile Pacific Salmon. Curr Biol 24(4):446–450

    Article  CAS  PubMed  Google Scholar 

  63. Durif CMF, Browman HI, Phillips JB, Skiftesvik AB, Vøllestad LA, Stockhausen HH (2013) Magnetic compass orientation in the European Eel. PLoS One 8(3):e59212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ulrich S (2006) Orientation and navigation in Amphibia. Mar Freshw Behav Physiol 39(1):65–71

    Article  Google Scholar 

  65. Diego-Rasilla FJ, Luengo RM, Phillips JB (2008) Use of a magnetic compass for nocturnal homing orientation in the palmate newt, Lissotritonhelveticus. Ethology 114:808–815

    Article  Google Scholar 

  66. Diego-Rasilla FJ, Luengo RM, Phillips JB (2010) Light-dependent magnetic compass in Iberian green frog tadpoles. Naturwissenschaften 97:1089–1095

    Article  Google Scholar 

  67. Diego-Rasilla FJ, Luengo RM, Phillips JB (2013) Use of a light-dependent magnetic compass for y-axis orientation in European common frog (Ranatemporaria) tadpoles. J Comp Physiol A 199(7):619–628

    Article  Google Scholar 

  68. Russell AP, Bauer AM, Johnson MK (2005) Migration in amphibians and reptiles: an overview of patterns and orientation mechanisms in relation to life history strategies. In: Elewa AMT (ed) Migration of organisms. Springer, Berlin, pp 151–203

    Chapter  Google Scholar 

  69. Hopcraft JGC, Morales JM, Beyer HL, Borner M, Mwangomo E, Sinclair ARE, Olff H, Haydon DT (2014) Competition, predation, and migration: individual choice patterns of Serengeti migrants captured by hierarchical models. Ecol Monogr 84:355–372

    Article  Google Scholar 

Download references

Acknowledgments

We thank Vinod Kumar for suggestions and comments on the manuscript. Financial assistance to NJG (SR/SO/AS-69/2011) and SKB (SR/SO/AS-70/2011) from Department of Science and Technology, New Delhi, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neelu Jain Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer (India) Pvt. Ltd.

About this chapter

Cite this chapter

Gupta, N.J., Dwivedi, V., Singh, B.P., Bhardwaj, S.K. (2017). Orientation in Migrating Animals: Role of Biological Clocks. In: Kumar, V. (eds) Biological Timekeeping: Clocks, Rhythms and Behaviour. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3688-7_31

Download citation

Publish with us

Policies and ethics