Skip to main content

Abstract

Despite continuous advancement in energy technologies, the greenhouse gas and pollutant emission due to combustion of fossil fuel is increasing day by day due to its growing demand. With the growing worldwide concern regarding increasing global climate change and depleting energy source, it has become the necessity of the hour to generate fuel with safer, efficient, economic, and reasonably environmental-friendly technology. To address this issue, a variety of efficient end-use technologies and alternative fuels have been proposed; this includes compressed natural gas; reformulated gasoline or diesel; methanol; ethanol; synthetic liquids from natural gas, biomass, or coal; and hydrogen. In this regard hydrogen has emerged as a promising option since it offers to solve various important societal impacts of fuel use at the same time. Hydrogen (H2) produced through wastewater treatment using biological routes (dark and photo-fermentation) can be considered as a renewable and sustainable resource. Negative-valued wastewater contains high levels of biodegradable organic material with net positive energy and minimizes the economics of H2 production and treatment cost. This chapter mainly focuses on the global biohydrogen research trend specifically in Asian countries. Bibliometric and scientometric analysis performed with ISI Web of Knowledge [Thomson Reuters] documented significant increments in publications wherein India stands top in biohydrogen production using wastewater. Current status and road map showed that China followed by other Asian countries have significantly contributed towards H2 production. Future perspective suggests for integrative H2 production strategies such as microbial electrolysis, polyhydroxyalkanoate (PHA) production, bioaugmentation, and metabolic engineering to overcome some of the limitations for process scale-up.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal M, Tardio J, Mohan SV (2013) Biohydrogen production from kitchen based vegetable waste: effect of pyrolysis temperature and time on catalysed and non-catalysed operation. Bioresour Technol 130:502–509

    Article  CAS  Google Scholar 

  • Agarwal M, Tardio J, Mohan SV (2015) Effect of pyrolysis parameters on yield and composition of gaseous products from activated sludge: towards sustainable biorefinery. Biomass Conv Bioref 5:227–235

    Google Scholar 

  • Akköse S, Gündüz U, Yücel M, Eroglu I (2009) Effects of ammonium ion, acetate and aerobic conditions on hydrogen production and expression levels of nitrogenase genes in Rhodobacter sphaeroides OU 001. Int J Hydrog Energy 34:8818–8827

    Google Scholar 

  • Allakhverdiev SI et al (2010) Photosynthetic hydrogen production. J Photochem Photobiol C: Photochem Rev 11:101–113

    Article  CAS  Google Scholar 

  • Angenent LT, Karim K, Al-Dahhan MH, Wrenn BA, Domíguez-Espinosa R (2004) Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol 22:477–485

    Article  CAS  Google Scholar 

  • Arimi MM, Knodel J, Kiprop A, Namango SS, Zhang Y, Geißen S-U (2015) Strategies for improvement of biohydrogen production from organic-rich wastewater: a review. Biomass Bioenergy 75:101–118

    Article  CAS  Google Scholar 

  • Arvelakis S, Koukios E (2002) Physicochemical upgrading of agroresidues as feedstocks for energy production via thermochemical conversion methods. Biomass Bioenergy 22:331–348

    Article  CAS  Google Scholar 

  • Asadullah M, Fujimoto K, Tomishige K (2001) Catalytic performance of Rh/CeO2 in the gasification of cellulose to synthesis gas at low temperature. Ind Eng Chem Res 40:5894–5900

    Article  CAS  Google Scholar 

  • Babu ML, Sarma P, Mohan SV (2013a) Microbial electrolysis of synthetic acids for biohydrogen production: influence of biocatalyst pretreatment and pH with the function of applied potential. J Microb Biochem Technol. S6:003, http://dx.doi.org/10.4172/1948-5948

  • Babu ML, Subhash GV, Sarma P, Mohan SV (2013b) Bio-electrolytic conversion of acidogenic effluents to biohydrogen: an integration strategy for higher substrate conversion and product recovery Bioresour Technol 133:322–331

    Google Scholar 

  • Balat M (2008) Potential importance of hydrogen as a future solution to environmental and transportation problems. Int J Hydrog Energy 33:4013–4029

    Article  CAS  Google Scholar 

  • Balat M (2009) Bioethanol as a vehicular fuel: a critical review. Energy Sources Part A 31:1242–1255

    Article  CAS  Google Scholar 

  • Balat M (2010) Thermochemical routes for biomass-based hydrogen production. Energy Sources Part A Recovery Utilization Environ Effects 32:1388–1398

    Google Scholar 

  • Batyrova KA, Tsygankov AA, Kosourov SN (2012) Sustained hydrogen photoproduction by phosphorus-deprived Chlamydomonas reinhardtii cultures. Int J Hydrog Energy 37:8834–8839

    Article  CAS  Google Scholar 

  • Bauer C, Forest T (2001) Effect of hydrogen addition on the performance of methane-fueled vehicles. Part I: effect on SI engine performance International. J Hydrog Energy 26:55–70

    Article  CAS  Google Scholar 

  • Berg JM, Tymoczko JL, Stryer L (2002) Glycolysis and gluconeogenesis. W. H. Freeman and Company, New York

    Google Scholar 

  • Beser J, Padilla B (2003) A New Mexico hydrogen cluster opportunity assessment. Final report prepared for the New Mexico Economic Development. LA-UR-04-2146

    Google Scholar 

  • Blankenship RE, Olson JM, Miller M (1995) Antenna complexes from green photosynthetic bacteria. In: Anoxygenic photosynthetic bacteria. Springer, Dordrecht, pp 399–435

    Google Scholar 

  • Cao XX, Huang X, Liang P, Xiao K, Zhou Y, Zhang X, Logan BE (2009) A new method for water desalination using microbial desalination cells. Environ Sci Technol 43:7148–7152

    Google Scholar 

  • Cavinato C, Bolzonella D, Fatone F, Cecchi F, Pavan P (2011) Optimization of two-phase thermophilic anaerobic digestion of biowaste for hydrogen and methane production through reject water recirculation. Bioresour Technol 102:8605–8611

    Article  CAS  Google Scholar 

  • Chandra R, Venkata Mohan SV (2014) Enhanced bio-hydrogenesis by co-culturing photosynthetic bacteria with acidogenic process: augmented dark-photo fermentative hybrid system to regulate volatile fatty acid inhibition. Int J Hydrog Energy 39:7604–7615

    Article  CAS  Google Scholar 

  • Chandra R, Nikhil G, Mohan SV (2015) Single-stage operation of hybrid dark-photo fermentation to enhance biohydrogen production through regulation of system redox condition: evaluation with real-field wastewater. Int J Mol Sci 16:9540–9556

    Article  CAS  Google Scholar 

  • Change IPoC (2006) 2006 IPCC guidelines for national greenhouse gas inventories. Intergovernmental Panel on Climate Change. http://www.ipcc-nggip.iges.or.jp/public/2006gl/

  • Chen G, Andries J, Spliethoff H (2003) Catalytic pyrolysis of biomass for hydrogen rich fuel gas production. Energy Convers Manag 44:2289–2296

    Article  CAS  Google Scholar 

  • Chen C-Y, Yeh K-L, Lo Y-C, Wang H-M, Chang J-S (2010) Engineering strategies for the enhanced photo-H 2 production using effluents of dark fermentation processes as substrate. Int J Hydrog Energy 35:13356–13364

    Article  CAS  Google Scholar 

  • Cheng S, Logan BE (2007) Sustainable and efficient biohydrogen production via electrohydrogenesis. Proc Natl Acad Sci 104:18871–18873

    Article  CAS  Google Scholar 

  • Cheng CH, Hsu SC, Wu CH, Chang PW, Lin CY, Hung CH (2011) Quantitative analysis of microorganism composition in a pilot- scale fermentative biohydrogen production system. Int J Hydrog Energy 36:14153–14161

    Google Scholar 

  • Cherry RS (2004) A hydrogen utopia? Int J Hydrog Energy 29:125–129

    Article  CAS  Google Scholar 

  • Clauwaert P, Verstraete W (2009) Methanogenesis in membraneless microbial electrolysis cells. Appl Microbiol Biotechnol 82:829–836

    Article  CAS  Google Scholar 

  • Cui MJZL, Yuan XH, Zhi LL, Wei JQ (2010) Shen biohydrogen production from poplar leaves pretreated by different methods using anaerobic mixed bacteria. Int J Hydrogen Energy 35:4041–4047

    Google Scholar 

  • Cusick RD, Kiely PD, Logan BE (2010) A monetary comparison of energy recovered from microbial fuel cells and microbial electrolysis cells fed winery or domestic wastewaters. Int J Hydrog Energy 35:8855–8861

    Article  CAS  Google Scholar 

  • Dalcor and Camford (2005) A study conducted for Natural Resources Canada by Dalcor Consultants Ltd. and Camford Information Services, Canadian hydrogen survey - 2004/2005 〈http://www.iphe.net/IPHErestrictedarea/Steeringkyoto/9-14-day1/2-1-6%20Japan.pdf

  • Dahiya S, Sarkar O, Swamy Y, Mohan SV (2015) Acidogenic fermentation of food waste for volatile fatty acid production with co-generation of biohydrogen. Bioresour Technol 182:103–113

    Article  CAS  Google Scholar 

  • Datar R, Huang J, Maness PC, Mohagheghi A, Czernik S, Chornet E (2007) Hydrogen production from the fermentation of corn stover biomass pretreated with a steam-explosion process. Int J Hydrogen Energy 32:932–939

    Google Scholar 

  • Das D, Veziroǧlu TN (2001) Hydrogen production by biological processes: a survey of literature. Int J Hydrog Energy 26:13–28

    Article  CAS  Google Scholar 

  • Das D, Khanna N, Veziroğlu NT (2008) Recent developments in biological hydrogen production processes. Chem Ind Chem Eng Q 14:57–67

    Article  CAS  Google Scholar 

  • de Jong W (2008) Sustainable hydrogen production by thermochemical biomass processing. Chapter 6:185–225, CRC Press, Taylor and Francis, Florida

    Google Scholar 

  • de Vrije T, de Haas GG, Tan GB, Keijsers ERP, Claassen PAM (2002) Pretreatment of Miscanthus for hydrogen production by Thermotoga elfii. Int J Hydrog Energy 27:1381–1390

    Google Scholar 

  • Demirbaş A (2002) Hydrogen production from biomass by the gasification process. Energy Sources 24:59–68

    Article  Google Scholar 

  • Dictor M-C, Joulian C, Touzé S, Ignatiadis I, Guyonnet D (2010) Electro-stimulated biological production of hydrogen from municipal solid waste. Int J Hydrog Energy 35:10682–10692

    Article  CAS  Google Scholar 

  • Doebbe A et al (2010) The interplay of proton, electron, and metabolite supply for photosynthetic H2 production in Chlamydomonas reinhardtii. J Biol Chem 285:30247–30260

    Article  CAS  Google Scholar 

  • Dunn S (2002) Hydrogen futures: toward a sustainable energy system. Int J Hydrog Energy 27:235–264

    Article  CAS  Google Scholar 

  • Elliott D (2000) Renewable energy and sustainable futures. Futures 32:261–274

    Article  Google Scholar 

  • Escapa A, Manuel M-F, Morán A, Gómez X, Guiot S, Tartakovsky B (2009) Hydrogen production from glycerol in a membraneless microbial electrolysis cell. Energy Fuel 23:4612–4618

    Article  CAS  Google Scholar 

  • Evans R et al (2003) Hydrogen from biomass-catalytic reforming of pyrolysis vapors. In: US DOE hydrogen, fuel cells & infrastructure technologies program—2003 annual merit review meeting. http://energy.gov/sites/prod/files/2014/03/f12/hfcit_annual_progress_report_2003.pdf

  • Florin L, Tsokoglou A, Happe T (2001) A novel type of iron hydrogenase in the green alga Scenedesmus obliquus is linked to the photosynthetic electron transport chain. J Biol Chem 276:6125–6132

    Google Scholar 

  • Fulton J, Marmaro RW, Egan GJ (2010) System for producing a hydrogen enriched fuel. Google Patents. http://www.google.co.in/patents/US7721682

  • Geiger S (2003) Fuel cells in China-a survey of current developments. Fuel cells today. Elsevier, Amsterdam, The Netherlands. http://www.hydrogenambassadors.com/china2004/images/Article_680_chinasurvey1003.pdf

  • Ghimire A, Frunzo L, Pirozzi F, Trably E, Escudie R, Lens PNL, Esposito G (2015) A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products. Appl Energy 144:73–95

    Article  CAS  Google Scholar 

  • Ghirardi ML, Zhang L, Lee JW, Flynn T, Seibert M, Greenbaum E, Melis A (2000) Microalgae: A green source of renewable H2. Trends Biotechnol 18:506–511

    Google Scholar 

  • Goud RK, Sarkar O, Chiranjeevi P, Venkata Mohan S (2014a) Bioaugmentation of potent acidogenic isolates: a strategy for enhancing biohydrogen production at elevated organic load. Bioresour Technol 165:223–232

    Article  CAS  Google Scholar 

  • Goud RK, Sarkar O, Mohan SV (2014b) Regulation of biohydrogen production by heat-shock pretreatment facilitates selective enrichment of Clostridium sp. Int J Hydrog Energy 39:7572–7586

    Article  CAS  Google Scholar 

  • Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36:269–274

    Article  CAS  Google Scholar 

  • Greenbaum E (1985) Platinized chloroplasts: a novel photocatalytic material. Science (New York, NY) 230:1373–1375

    Article  CAS  Google Scholar 

  • Greenbaum E (1988a) Energetic efficiency of hydrogen photoevolution by algal water splitting. Biophys J 54:365–368

    Google Scholar 

  • Greenbaum E (1988b) Interfacial photoreactions at the photosynthetic membrane interface: an upper limit for the number of platinum atoms required to form a hydrogen-evolving platinum metal catalyst. J Phys Chem 92:4571–4574

    Article  CAS  Google Scholar 

  • Guan Y, Deng M, Yu X, Zhang W (2004) Two-stage photo-biological production of hydrogen by marine green alga Platymonas subcordiformis. Biochem Eng J 19:69–73

    Google Scholar 

  • Gupta BR (2012) Indian association for hydrogen energy and advanced materials HEAM NEWS. Future prospects of hydrogen, energy as alternative fuel in India

    Google Scholar 

  • Guwy A, Dinsdale R, Kim J, Massanet-Nicolau J, Premier G (2011) Fermentative biohydrogen production systems integration. Bioresour Technol 102:8534–8542

    Article  CAS  Google Scholar 

  • Hallenbeck PC (2011) Microbial paths to renewable hydrogen production. Biofuels 2:285–302

    Article  CAS  Google Scholar 

  • Hallenbeck PC, Benemann JR (2002) Biological hydrogen production; fundamentals and limiting processes. Int J Hydrog Energy 27:1185–1193

    Article  CAS  Google Scholar 

  • Harun R, Danquah MK, Forde GM (2010) Microalgal biomass as a fermentation feedstock for bioethanol production. J Chem Technol Biotechnol 85:199–203, http://www.marketsandmarkets.com/Market-Reports/hydrogen-generation-market-494.html

  • Haslam GE, Jupesta J, Parayil G (2012) Assessing fuel cell vehicle innovation and the role of policy in Japan, Korea, and China. Int J Hydrog Energy 37:14612–14623

    Article  CAS  Google Scholar 

  • Hu H, Fan Y, Liu H (2008) Hydrogen production using single-chamber membrane-free microbial electrolysis cells. Water Res 42:4172–4178

    Article  CAS  Google Scholar 

  • Iyuke SE, Mohamad AB, Kadhum AAH, Daud WR, Rachid C (2003) Improved membrane and electrode assemblies for proton exchange membrane fuel cells. J Power Sources 114:195–202

    Article  CAS  Google Scholar 

  • Jalan R, Srivastava V (1999) Studies on pyrolysis of a single biomass cylindrical pellet—kinetic and heat transfer effects. Energy Convers Manag 40:467–494

    Article  CAS  Google Scholar 

  • Jia X et al (2014) Integration of fermentative biohydrogen with methanogenesis from fruit–vegetable waste using different pre-treatments. Energy Convers Manag 88:1219–1227

    Article  CAS  Google Scholar 

  • Jordan R, Nessau U, Schlodder E (1998) Charge recombination between the reduced iron-sulphur clusters and P700+. In: Photosynthesis: mechanisms and effects. Springer, Dordrecht, pp 663–666

    Google Scholar 

  • Kamarudin SK, Daud WRW, Mohammad AW, Som AM, Takriff MS (2003) Design of a tubular ceramic membrane for gas separation in a PEMFC system. Fuel Cells 3:189–198

    Article  Google Scholar 

  • Kanai T, Imanaka H, Nakajima A, Uwamori K, Omori Y, Fukui T, Atomi H, Imanaka T (2005) Continuous hydrogen production by the hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1. J Biotechnol 116:271–282

    Google Scholar 

  • Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzyme Microb Technol 38:569–582

    Article  CAS  Google Scholar 

  • Kongjan P, Angelidaki I (2010) Extreme thermophilic biohydrogen production from wheat straw hydrolysate using mixed culture fermentation: Effect of reactor configuration. Bioresour Technol 101:7789–7796

    Google Scholar 

  • Kotay SM, Das D (2010) Microbial hydrogen production from sewage sludge bioaugmented with a constructed microbial consortium. Int J Hydrog Energy 35:10653–10659

    Article  CAS  Google Scholar 

  • Krabben L et al (2000) Influence of the axial ligands on the spectral properties of P700 of photosystem I: a study of site-directed mutants. Biochemistry 39:13012–13025

    Article  CAS  Google Scholar 

  • Kraemer JT, Bagley DM (2007) Improving the yield from fermentative hydrogen production. Biotechnol Lett 29:685–695

    Article  CAS  Google Scholar 

  • Krassen H, Schwarze A, Friedrich B, Ataka K, Lenz O, Heberle J (2009) Photosynthetic hydrogen production by a hybrid complex of photosystem I and [NiFe]-hydrogenase. ACS Nano 3:4055–4061

    Article  CAS  Google Scholar 

  • Lalaurette E, Thammannagowda S, Mohagheghi A, Maness P-C, Logan BE (2009) Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis. Int J Hydrog Energy 34:6201–6210

    Article  CAS  Google Scholar 

  • Lalitha Devi G, Sukumaran RK, Venkata Mohan S, Sajna K, Sarkar O, Pandey A (2015) Rice straw hydrolysate to fuel and volatile fatty acid conversion by Clostridium sporogenes BE01: bio-electrochemical analysis of the electron transport mediators involved. Green Chem 17(5):3047–3058

    Google Scholar 

  • Larsen HH, Feidenhans’l RK, Sønderberg Petersen L (2004) Risø energy report 3. Hydrogen and its competitors. Risoe-R; No. 1469(EN). Forskningscenter Risoe, Roskilde

    Google Scholar 

  • Laurikko J (2006) Transport-related hydrogen activities in Asia. Report within PREMIA WP2. International activities on alternative motor fuels

    Google Scholar 

  • Laurinavichene TV, Belokopytov BF, Laurinavichius KS, Khusnutdinova AN, Seibert M, Tsygankov AA (2012) Towards the integration of dark- and photo-fermentative waste treatment. 4. Repeated batch sequential dark- and photofermentation using starch as substrate International. J Hydrog Energy 37:8800–8810

    Article  CAS  Google Scholar 

  • Lee H-S, Rittmann BE (2009) Significance of biological hydrogen oxidation in a continuous single-chamber microbial electrolysis cell. Environ Sci Technol 44:948–954

    Article  CAS  Google Scholar 

  • Lee JW, Lee I, Laible PD, Owens TG, Greenbaum E (1995) Chemical platinization and its effect on excitation transfer dynamics and P700 photooxidation kinetics in isolated photosystem I. Biophys J 69:652–659

    Google Scholar 

  • Lee I, Lee JW, Stubna A, Greenbaum E (2000) Measurement of electrostatic potentials above oriented single photosynthetic reaction centers. J Phys Chem B 104:2439–2443

    Article  CAS  Google Scholar 

  • Lee SK, Mogi G, Kim JW (2008) The competitiveness of Korea as a developer of hydrogen energy technology: the AHP approach. Energy Policy 36:1284–1291

    Article  Google Scholar 

  • Lee SK, Mogi G, Lee SK, Hui K, Kim JW (2010) Econometric analysis of the R&D performance in the national hydrogen energy technology development for measuring relative efficiency: the fuzzy AHP/DEA integrated model approach. Int J Hydrog Energy 35:2236–2246

    Article  CAS  Google Scholar 

  • Levin DB, Chahine R (2010) Challenges for renewable hydrogen production from biomass. Int J Hydrog Energy 35:4962–4969

    Article  CAS  Google Scholar 

  • Lin S-Y, Suzuki Y, Hatano H, Harada M (2001) Hydrogen production from hydrocarbon by integration of water-carbon reaction and carbon dioxide removal (HyPr-RING method). Energy Fuel 15:339–343

    Article  CAS  Google Scholar 

  • Lin C-Y, Lay C-H, Sen B, Chu C-Y, Kumar G, Chen C-C, Chang J-S (2012) Fermentative hydrogen production from wastewaters: a review and prognosis. Int J Hydrog Energy 37:15632–15642

    Article  CAS  Google Scholar 

  • Lindsay I, Lowe C, Reddy S, Bhakta M, Balkenende S (2009) Designing a climate friendly hydrogen plant. Energy Procedia 1:4095–4102

    Article  CAS  Google Scholar 

  • Lipman T (2011) An overview of hydrogen production and storage systems with renewable hydrogen case studies. Prepared for the clean energy states alliance, Montpelier, Vermont citing US DOE data 11

    Google Scholar 

  • Liu H, Grot S, Logan BE (2005) Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol 39:4317–4320

    Article  CAS  Google Scholar 

  • Liu B-F, Ren N-Q, Ding J, Xie G-J, Cao G-L (2009) Enhanced photo-H 2 production of R. faecalis RLD-53 by separation of CO 2 from reaction system. Bioresour Technol 100:1501–1504

    Article  CAS  Google Scholar 

  • Ljunggren M, Zacchi G (2010) Techno-economic analysis of a two-step biological process producing hydrogen and methane. Bioresour Technol 101:7780–7788

    Article  CAS  Google Scholar 

  • Lo YC, Chen CY, Lee CM, Chang JS (2010) Combining dark-photo fermentation and microalgae photosynthetic processes for high-yield and CO2- free biohydrogen production. Int J Hydrogen Energy 35:10944–10953

    Google Scholar 

  • Logan B, Grot S (2005) A bioelectrochemically assisted microbial reactor (BEAMR) that generates hydrogen gas. Patent Appl 60:022

    Google Scholar 

  • Logan BE, Call D, Cheng S, Hamelers HV, Sleutels TH, Jeremiasse AW, Rozendal RA (2008) Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ Sci Technol 42:8630–8640

    Article  CAS  Google Scholar 

  • Loppacher LJ, Kerr WA (2005) Can biofuels become a global industry?: government policies and trade constraints. Energy Polit 5:7–27

    Google Scholar 

  • Lu Y et al (2009) Characteristics of hydrogen and methane production from cornstalks by an augmented two-or three-stage anaerobic fermentation process. Bioresour Technol 100:2889–2895

    Article  CAS  Google Scholar 

  • Luo G, Xie L, Zou Z, Wang W, Zhou Q (2010) Evaluation of pretreatment methods on mixed inoculum for both batch and continuous thermophilic biohydrogen production from cassava stillage. Bioresour Technol 101:959–964

    Google Scholar 

  • Madsen EL (2008) Environmental Microbiology: From Genomes to Biogeochemistry. Blackwell Publishing, Malden

    Google Scholar 

  • Madsen EL (2015) Environmental microbiology: from genomes to biogeochemistry. Wiley & Sons, Inc., Hoboken, New Jersey

    Google Scholar 

  • Magnusson L, Islam R, Sparling R, Levin D, Cicek N (2008) Direct hydrogen production from cellulosic waste materials with a single-step dark fermentation process. Int J Hydrogen Energy 33:5398–5403

    Google Scholar 

  • Markets and Markets (2011) Hydrogen generation market-by merchant & captive type, distributed & centralized generation, application & technology-trends & global forecasts (2011–2016). Report code: EP1708

    Google Scholar 

  • Mars AE, Veuskens T, Budde MAW, van Doeveren PFNM, Lips SJ, Bakker RR, De Vrije T, Claassen PA (2010) Biohydrogen production from untreated and hydrolyzed potato steam peels by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Int J Hydrogen Energy 35:7730–7737

    Google Scholar 

  • Maruta A (2005) Japan’s hydrogen and fuel cells projects. Hann over fair. International conference hydrogen & fuel cells on their way to commercialisation. http://www.fair-pr.com/hm05/conference/maruta.pdf

  • Melis A (2007) Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae). Planta 226:1075–1086

    Article  CAS  Google Scholar 

  • Melis A (2009) Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant Sci 177:272–280

    Article  CAS  Google Scholar 

  • Melis A (2012) Photosynthesis-to-fuels: from sunlight to hydrogen, isoprene, and botryococcene production. Energy Environ Sci 5:5531–5539

    Article  CAS  Google Scholar 

  • Melis A, Happe T (2001) Hydrogen production. Green algae as a source of energy. Plant physiology 127:740–748

    Article  CAS  Google Scholar 

  • Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga chlamydomonas reinhardtii. Plant Physiol 122:127–136

    Article  CAS  Google Scholar 

  • Millsaps JF, Bruce BD, Lee JW, Greenbaum E (2001) Nanoscale photosynthesis: photocatalytic production of hydrogen by platinized photosystem I reaction centers. Photochem Photobiol 73:630–635

    Article  CAS  Google Scholar 

  • Mohammed M, Salmiaton A, Azlina WW, Amran MM, Fakhru’l-Razi A, Taufiq-Yap Y (2011) Hydrogen rich gas from oil palm biomass as a potential source of renewable energy in Malaysia. Renew Sustain Energy Rev 15:1258–1270

    Article  CAS  Google Scholar 

  • Mohan SV (2009) Harnessing of biohydrogen from wastewater treatment using mixed fermentative consortia: process evaluation towards optimization. Int J Hydrog Energy 34:7460–7474

    Article  CAS  Google Scholar 

  • Mohan SV (2010) Waste to renewable energy: a sustainable and green approach towards production of biohydrogen by acidogenic fermentation. In: Sustainable biotechnology. Springer, Dordrecht, pp 129–164

    Google Scholar 

  • Mohan SV, Babu ML (2011) Dehydrogenase activity in association with poised potential during biohydrogen production in single chamber microbial electrolysis cell. Bioresour Technol 102:8457–8465

    Article  CAS  Google Scholar 

  • Mohan SV, Babu VL, Sarma P (2007) Anaerobic biohydrogen production from dairy wastewater treatment in sequencing batch reactor (AnSBR): effect of organic loading rate. Enzyme Microb Technol 41:506–515

    Article  CAS  Google Scholar 

  • Mohan SV, Mohanakrishna G, Sarma P (2008) Integration of acidogenic and methanogenic processes for simultaneous production of biohydrogen and methane from wastewater treatment. Int J Hydrog Energy 33:2156–2166

    Article  CAS  Google Scholar 

  • Mohan SV, Srikanth S, Velvizhi G, Babu ML (2013) Microbial fuel cells for sustainable bioenergy generation: principles and perspective applications. In: Biofuel technologies. Springer, Dordrecht, pp 335–368

    Google Scholar 

  • Mohanakrishna G, Venkata Mohan S (2013) Multiple process integrations for broad perspective analysis of fermentative H 2 production from wastewater treatment: technical and environmental considerations. Appl Energy 107:244–254

    Article  CAS  Google Scholar 

  • Mohanakrishna G, Goud RK, Mohan SV, Sarma P (2010a) Enhancing biohydrogen production through sewage supplementation of composite vegetable based market waste. Int J Hydrog Energy 35:533–541

    Article  CAS  Google Scholar 

  • Mohanakrishna G, Mohan SV, Sarma P (2010b) Utilizing acid-rich effluents of fermentative hydrogen production process as substrate for harnessing bioelectricity: an integrative approach. Int J Hydrog Energy 35:3440–3449

    Article  CAS  Google Scholar 

  • Monlau F, Kaparaju P, Trably E, Steyer J-P, Carrere H (2015) Alkaline pretreatment to enhance one-stage CH 4 and two-stage H 2/CH 4 production from sunflower stalks: mass, energy and economical balances. Chem Eng J 260:377–385

    Article  CAS  Google Scholar 

  • Narváez I, Corella J, Orío A (1997) Fresh tar (from a biomass gasifier) elimination over a commercial steam-reforming catalyst. Kinetics and effect of different variables of operation. Ind Eng Chem Res 36:317–327

    Article  Google Scholar 

  • Ni M, Leung DY, Leung MK, Sumathy K (2006) An overview of hydrogen production from biomass. Fuel Process Technol 87:461–472

    Article  CAS  Google Scholar 

  • Nikhil G, Mohan SV, Swamy Y (2014a) Behavior of acidogenesis during biohydrogen production with formate and glucose as carbon source: substrate associated dehydrogenase expression. Int J Hydrog Energy 39:7486–7495

    Article  CAS  Google Scholar 

  • Nikhil GN, Venkata Mohan S, Swamy YV (2014b) Systematic approach to assess biohydrogen potential of anaerobic sludge and soil rhizobia as biocatalysts: influence of crucial factors affecting acidogenic fermentation. Bioresour Technol 165:323–331

    Article  CAS  Google Scholar 

  • Nikhil G, Mohan SV, Swamy Y (2015) Applied potentials regulate recovery of residual hydrogen from acid-rich effluents: influence of biocathodic buffer capacity over process performance. Bioresour Technol 188:65–72

    Article  CAS  Google Scholar 

  • Noike T, Takabatake H, Mizuno O, Ohba M (2002) Inhibition of hydrogen fermentation of organic wastes by lactic acid bacteria. Int J Hydrogen Energy 27: 1367–1371

    Google Scholar 

  • Nouni M (2012) Hydrogen energy and fuel cell technology: recent developments and future prospects in India. Renew Energy Akshay Urja 5:10–15

    Google Scholar 

  • Okano K (2002) Introduction to the Hydrogen Energy Systems Society of Japan. HESS. www.hpath.org/resources/path-newsletter-02-11-01.pdf

  • Orecchini F, Bocci E (2007) Biomass to hydrogen for the realization of closed cycles of energy resources. Energy 32:1006–1011

    Article  CAS  Google Scholar 

  • Özkan E, Uyar B, Özgür E, Yücel M, Eroglu I, Gündüz U (2012) Photofermentative hydrogen production using dark fermentation effluent of sugar beet thick juice in outdoor conditions. Int J Hydrog Energy 37:2044–2049

    Article  CAS  Google Scholar 

  • Ozmihci S, Kargi F (2011) Dark fermentative bio-hydrogen production from waste wheat starch using co-culture with periodic feeding: effects of substrate loading rate. Int J Hydrog Energy 36:7089–7093

    Article  CAS  Google Scholar 

  • Panagiotopoulos IA, Bakker RR, de Vrije T, Koukios EG, Claassen PAM (2010) Pretreatment of sweet sorghum bagasse for hydrogen production by Caldicellulosiruptor saccharolyticus. Int J Hydrogen Energy 35:7738–7747

    Google Scholar 

  • Pandey A, Chang J-S, Hallenbeck PC, Larroche C (2013) Biohydrogen. Elsevier, Amsterdam

    Google Scholar 

  • Pasupuleti SB, Mohan SV (2015) Single-stage fermentation process for high-value biohythane production with the treatment of distillery spent-wash. Bioresour Technol 189:177–185

    Article  CAS  Google Scholar 

  • Pasupuleti SB, Sarkar O, Mohan SV (2014) Upscaling of biohydrogen production process in semi-pilot scale biofilm reactor: evaluation with food waste at variable organic loads. Int J Hydrog Energy 39:7587–7596

    Article  CAS  Google Scholar 

  • Pattra S, Sangyoka S, Boonmee M, Reungsang A (2008) Bio-hydrogen production from the fermentation of sugarcane bagasse hydrolysate by Clostridium butyricum. Int J Hydrogen Energy 33:5256–5265

    Google Scholar 

  • Pekgöz G, Gündüz U, Eroğlu I, Yücel M, Kovács K, Rákhely G (2011) Effect of inactivation of genes involved in ammonium regulation on the biohydrogen production of Rhodobacter capsulatus. Int J Hydrog Energy 36:13536–13546

    Article  CAS  Google Scholar 

  • Pudukudy M, Yaakob Z, Mohammad M, Narayanan B, Sopian K (2014) Renewable hydrogen economy in Asia–Opportunities and challenges: an overview. Renew Sustain Energy Rev 30:743–757

    Article  Google Scholar 

  • Rai PK, Singh S, Asthana R (2012) Biohydrogen production from cheese whey wastewater in a two-step anaerobic process. Appl Biochem Biotechnol 167:1540–1549

    Article  CAS  Google Scholar 

  • Rai PK, Singh S, Asthana R, Singh S (2014) Biohydrogen production from sugarcane bagasse by integrating dark-and photo-fermentation. Bioresour Technol 152:140–146

    Article  CAS  Google Scholar 

  • Reddy MV, Nikhil G, Mohan SV, Swamy Y, Sarma P (2012) Pseudomonas otitidis as a potential biocatalyst for polyhydroxyalkanoates (PHA) synthesis using synthetic wastewater and acidogenic effluents. Bioresour Technol 123:471–479

    Article  CAS  Google Scholar 

  • Reij MW, Keurentjes JT, Hartmans S (1998) Membrane bioreactors for waste gas treatment. J Biotechnol 59:155–167

    Article  CAS  Google Scholar 

  • Ren N, Wang A, Gao L, Xin L, Lee D-J, Su A (2008) Bioaugmented hydrogen production from carboxymethyl cellulose and partially delignified corn stalks using isolated cultures. Int J Hydrog Energy 33:5250–5255

    Article  CAS  Google Scholar 

  • Richmond A, Hu Q (2013) Handbook of microalgal culture: applied phycology and biotechnology. Wiley & Sons, Inc., Hoboken, New Jersey

    Google Scholar 

  • Romeri M (2004) Hydrogen:a new possible bridge between mobility and distributed generation (CHP). World Energy Conference (WEC). http://www.worldenergy. org/weceis/congress/papers/romeriv0904.pdf

    Google Scholar 

  • Romeri V, Sim R (2004) Hydrogen: a new possible bridge between mobility and distributed generation (CHP). In: 19th world energy congress, pp 5–9

    Google Scholar 

  • Rozendal RA, Hamelers HV, Euverink GJ, Metz SJ, Buisman CJ (2006) Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int J Hydrog Energy 31:1632–1640

    Article  CAS  Google Scholar 

  • Rozendal RA, Hamelers HV, Molenkamp RJ, Buisman CJ (2007) Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes. Water Res 41:1984–1994

    Article  CAS  Google Scholar 

  • Saiki Y, Amao Y (2004) Visible light-induced enzymatic hydrogen production from oligosaccharides using Mg chlorophyll-a and platinum colloid conjugate system. Int J Hydrog Energy 29:695–699

    Article  CAS  Google Scholar 

  • Sari R, Yaakob Z, Ismail M, Daud WRW, Hakim L (2013) Palladium–alumina composite membrane for hydrogen separator fabricated by combined sol–gel, and electroless plating technique. Ceram Int 39:3211–3219

    Article  CAS  Google Scholar 

  • Sarkar O, Goud RK, Subhash GV, Mohan SV (2013) Relative effect of different inorganic acids on selective enrichment of acidogenic biocatalyst for fermentative biohydrogen production from wastewater. Bioresour Technol 147:321–331

    Article  CAS  Google Scholar 

  • Sarkar O, Agarwal M, Kumar AN, Mohan SV (2015) Retrofitting hetrotrophically cultivated algae biomass as pyrolytic feedstock for biogas, bio-char and bio-oil production encompassing biorefinery. Bioresour Technol 178:132–138

    Article  CAS  Google Scholar 

  • Sarkar O, Kumar AN, Dahiya S, Krishna KV, Yeruva DK, Mohan SV (2016) Regulation of acidogenic metabolism towards enhanced short chain fatty acid biosynthesis from waste: metagenomic profiling. RSC Adv 6:18641–18653

    Article  CAS  Google Scholar 

  • Saxena R, Seal D, Kumar S, Goyal H (2008) Thermo-chemical routes for hydrogen rich gas from biomass: a review. Renew Sustain Energy Rev 12:1909–1927

    Article  CAS  Google Scholar 

  • Schnackenberg J, Ikemoto H, Miyachi S (1996) Photosynthesis and hydrogen evolution under stress conditions in a CO 2-tolerant marine green alga, Chlorococcum littorale. J Photochem Photobiol B Biol 34:59–62

    Google Scholar 

  • Shafie S, Mahlia T, Masjuki H, Ahmad-Yazid A (2012) A review on electricity generation based on biomass residue in Malaysia. Renew Sustain Energy Rev 16:5879–5889

    Article  Google Scholar 

  • Shakya B, Aye L, Musgrave P (2005) Technical feasibility and financial analysis of hybrid wind–photovoltaic system with hydrogen storage for Cooma. Int J Hydrog Energy 30:9–20

    Article  CAS  Google Scholar 

  • Shi D (2006) Chinese hydrogen update. Ministry of Science and Technology of China. In: 6th IPHE steering committee meeting Reykjavik, Iceland

    Google Scholar 

  • Singh S, Sudhakaran AK, Sarma PM, Subudhi S, Mandal AK, Gandham G, Lal B (2010) Dark fermentative biohydrogen production by mesophilic bacterial consortia isolated from riverbed sediments. Int J Hydrog Energy 35:10645–10652

    Article  CAS  Google Scholar 

  • Sivaramakrishna D, Sreekanth D, Sivaramakrishnan M, Kumar BS, Himabindu V, Narasu ML (2014) Effect of system optimizing conditions on biohydrogen production from herbal wastewater by slaughterhouse sludge. Int J Hydrog Energy 39:7526–7533

    Article  CAS  Google Scholar 

  • Srikanth S, Mohan SV, Devi MP, Babu ML, Sarma P (2009a) Effluents with soluble metabolites generated from acidogenic and methanogenic processes as substrate for additional hydrogen production through photo-biological process. Int J Hydrog Energy 34:1771–1779

    Article  CAS  Google Scholar 

  • Srikanth S, Mohan SV, Devi MP, Peri D, Sarma P (2009b) Acetate and butyrate as substrates for hydrogen production through photo-fermentation: process optimization and combined performance evaluation. Int J Hydrog Energy 34:7513–7522

    Article  CAS  Google Scholar 

  • Sutton D, Kelleher B, Ross JR (2002) Catalytic conditioning of organic volatile products produced by peat pyrolysis. Biomass Bioenergy 23:209–216

    Article  CAS  Google Scholar 

  • Takahara I (2005) Japan’s approach to commercialisation of fuel cell or hydrogen technology. IPHE. Steering committee meeting

    Google Scholar 

  • Ueno Y, Fukui H, Goto M (2007) Operation of a two-stage fermentation process producing hydrogen and methane from organic waste. Environ Sci Technol 41:1413–1419

    Google Scholar 

  • Ueno Y, Haruta S, Ishii M, Igarashi Y (2001) Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost. Appl Microbiol Biotechnol 57:555–562

    Google Scholar 

  • Vadiee A, Yaghoubi M, Sardella M, Farjam P (2015) Energy analysis of fuel cell system for commercial greenhouse application–a feasibility study. Energy Convers Manag 89:925–932

    Google Scholar 

  • Vardar‐Schara G, Maeda T, Wood TK (2008) Metabolically engineered bacteria for producing hydrogen via fermentation. J Microbial Biotechnol 1:107–125

    Article  CAS  Google Scholar 

  • Venkata Mohan S (2010) Waste to renewable energy: a sustainable and green approach towards production of biohydrogen by acidogenic fermentation. In: Sustainable biotechnology: renewable resources and new perspectives. Springer, 129–164

    Google Scholar 

  • Venkata Mohan S, Srikanth S, Babu ML, Sarma PN (2010a) Insight into the dehydrogenase catalyzed redox reactions and electron discharge pattern during fermentative hydrogen production. Bioresour Technol 101:1826–1833

    Google Scholar 

  • Venkata Mohan S, Raghavulu SV, Goud RK, Srikanth S, Babu VL, Sarma PN (2010b) Microbial diversity analysis of long term operated biofilm configured anaerobic reactor producing biohydrogen from wastewater under diverse conditions. Int J Hydrog Energy 35:12208–12215

    Google Scholar 

  • Venkata Mohan S, Pandey A (2013) Chapter 1 – biohydrogen production: an introduction. In: Larroche AP-SCCH (ed) Biohydrogen. Elsevier, Amsterdam, pp 1–24

    Chapter  Google Scholar 

  • Venkata Mohan S, Mohanakrishna G, Veer Raghavulu S, Sarma PN (2007) Enhancing biohydrogen production from chemical wastewater treatment in anaerobic sequencing batch biofilm reactor (AnSBBR) by bioaugmenting with selectively enriched kanamycin resistant anaerobic mixed consortia. Int J Hydrog Energy 32:3284–3292

    Article  CAS  Google Scholar 

  • Venkata Mohan S, Chandrasekhar K, Chiranjeevi P, Suresh Babu P (2013) Chapter 10 – biohydrogen production from wastewater. In: Larroche AP-SCCH (ed) Biohydrogen. Elsevier, Amsterdam, pp 223–257

    Chapter  Google Scholar 

  • Venkata Mohan S, Nikhil GN, Chiranjeevi P, Reddy CN, Rohit MV, Kumar AN, Sarkar O (2016) Waste biorefinery models towards sustainable circular bioeconomy: critical review and future perspectives. Bioresour Technol.doi:10.1016/j.biortech.2016.03.130

    Google Scholar 

  • Venkateswar Reddy M, Chitanya DNSK, Nikhil GN, Venkata Mohan S, Sarma PN (2014) Influence of co‐factor on enhancement of bioplastic production through wastewater treatment. Clean–Soil Air Water 42:809–814

    Article  CAS  Google Scholar 

  • Veziroğlu TN, Şahi S (2008) 21st century’s energy: hydrogen energy system. Energy Convers Manag 49:1820–1831

    Article  CAS  Google Scholar 

  • Vyas D, Kumar H (1995) Nitrogen fixation and hydrogen uptake in four cyanobacteria. Int J Hydrog Energy 20:163–168

    Article  CAS  Google Scholar 

  • Wagner RC, Regan JM, Oh S-E, Zuo Y, Logan BE (2009) Hydrogen and methane production from swine wastewater using microbial electrolysis cells. Water Res 43:1480–1488

    Google Scholar 

  • Wang B, Wan W, Wang J (2009) Effect of ammonia concentration on fermentative hydrogen production by mixed cultures. Bioresour Technol 100:1211–1213

    Article  CAS  Google Scholar 

  • Wang A, Sun D, Cao G, Wang H, Ren N, Wu W-M, Logan BE (2011) Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell. Bioresour Technol 102:4137–4143

    Article  CAS  Google Scholar 

  • Williams PT, Brindle AJ (2002) Catalytic pyrolysis of tyres: influence of catalyst temperature. Fuel 81:2425–2434

    Article  CAS  Google Scholar 

  • Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329:796–799

    Article  CAS  Google Scholar 

  • Winkler M, Heil B, Heil B, Happe T (2002) Isolation and molecular characterization of the [Fe]-hydrogenase from the unicellular green alga Chlorella fusca. Biochim Biophys Acta 1576:330–334

    Article  CAS  Google Scholar 

  • Wornat MJ, Hurt RH, Yang NY, Headley TJ (1995) Structural and compositional transformations of biomass chars during combustion. Combust Flame 100:131–143

    Article  CAS  Google Scholar 

  • Yong TLK, Lee KT, Mohamed AR, Bhatia S (2007) Potential of hydrogen from oil palm biomass as a source of renewable energy worldwide. Energy Policy 35:5692–5701

    Article  Google Scholar 

  • Zhang Z, Maruyama A (2001) Towards a private–public synergy in financing climate change mitigation projects. Energy Policy 29:1363–1378

    Article  Google Scholar 

  • Zhou A, Thomson E (2009) The development of biofuels in Asia. Appl Energy 86:S11–S20

    Article  Google Scholar 

  • http://www.greencarcongress.com/2013/03/ballard-20130313.html

  • http://investing.businessweek.com/research/stocks/private/snapshot.asp?privcapId=23713224

  • www.energyaccess.in

Download references

Acknowledgements

The authors (SVM, GNN, OS) wish to thank financial support from Ministry of New and Renewable Energy (MNRE), Government of India and Council for Scientific and Industrial Research (CSIR) in the form of research grants as MNRE Project No. 103/131/2008-NT, XII five year network project (SETCA (CSC-0113)), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupam Kataki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer India

About this chapter

Cite this chapter

Kataki, R. et al. (2017). Biohydrogen Production Scenario for Asian Countries. In: Singh, A., Rathore, D. (eds) Biohydrogen Production: Sustainability of Current Technology and Future Perspective. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3577-4_10

Download citation

Publish with us

Policies and ethics