Skip to main content

Natural Insecticides from Actinomycetes and Other Microbes for Vector Mosquito Control

  • Chapter
  • First Online:
Herbal Insecticides, Repellents and Biomedicines: Effectiveness and Commercialization

Abstract

Mosquitoes are the most dreadful bloodsucking insects in the world, and though tiny in size, they inflict most human deaths worldwide. They transmit deadly pathogens like Plasmodium, chikungunya virus, yellow fever virus, dengue virus, Japanese encephalitis virus and West Nile virus. Worldwide, there are 3500 species of mosquitoes grouped into 41 genera, but only 100 species are reported as vectors of human and other vertebrate diseases. India contributes nearly 34 % of global dengue and 11 % of global malaria cases. During the year 2012, nearly 1.13 million people were infected with dengue, malaria and chikungunya in India, and 766 succumbed to these diseases. In India, three genera, namely, Aedes, Anopheles and Culex, are the most common groups of mosquitoes found almost in all regions. Aedes spp. transmit dengue, chikungunya and yellow fever, Anopheles spp. transmit malaria, and Culex spp. transmit filariasis and Japanese encephalitis. In recent years, a decrease in the malaria and filariasis cases has been reported, but the number of infected cases and mortality due to dengue is steadily increasing. The failure in mosquito control is mainly due to the inefficiency of synthetic pesticides and repellents. Mosquitoes have developed resistance to almost all types of chemical insecticides. The increasing number of mosquito breeding sites and the destruction of mosquitoes’ natural enemies are also contributing to the sudden rise in mosquito population and mosquito-borne diseases. Application of synthetic chemicals in water bodies is unsafe to humans and nontarget organisms. Microbial pesticides and botanical pesticides are eco-friendly and target specific compared to synthetic pesticides. Microbial pesticides obtained from actinomycetes, Bacillus thuringiensis (Bt), B. sphaericus (Bs) and many other microorganisms are reported as eco-friendly alternatives for mosquito control. A large number of Bt strains have been reported to possess insecticidal properties against different groups of insects. B. thuringiensis israelensis (Bti) is an important pathogenic bacterium to mosquitoes. The secondary metabolites of some microorganisms are potential toxins against mosquito larvae at very low concentrations. Spinosad, a potent insecticide, has been isolated from the actinomycete bacterium Saccharopolyspora spinosa. In this review, potentially effective actinomycetes and other microorganisms against mosquito larvae and their effective bioactive compounds are described. The review also presents up-to-date information on the efficacy of microbial pesticides in mosquito control, their biosafety, field efficacy and commercial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ando K (1983) How to discover new antibiotics for insecticidal use. In: Takahashi T, Yoshioka H, Misato T, Matusunaka S (eds) Pesticide chemistry: human welfare and the environment, vol 2, Natural products. Pergamon Press, New York, pp 253–259

    Google Scholar 

  • Anonymous (1990) Biologically active KSB-1939L3 compound and its production-pesticide with insecticide and acaricide activity production by Streptomyces sp. culture. Biotechnol Abst 9(19):58. Japan Patent no 273961, 1988

    Google Scholar 

  • Anonymous (2013) Biopesticides – quality assurance. Policy paper 62. National Academy of Agricultural Sciences, New Delhi

    Google Scholar 

  • Bassi A (1836) Del mal del segno e di altre malattie dei bachi da seta. Parte seconda. Practica Tipografia Orcesi, Lodi: 58

    Google Scholar 

  • Berry C, O’Neill S, Ben-Dov E et al (2002) Complete sequence and organization of pBtoxis, the toxin-coding plasmid of Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol 68:5082–5095

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bilal H, Akram W, Ali-Hassan S (2012) Larvicidal activity of Citrus limonoids against Aedes albopictus larvae. J Arthropod Borne Dis 6(2):104–111

    PubMed Central  PubMed  Google Scholar 

  • Biondi A, Mommaerts V, Smagghe G et al (2012) The non-target impact of spinosyns on beneficial arthropods. Pest Man Sci. doi:10.1002/ps.3396

    Google Scholar 

  • Bode HB, Bethe B, Höfs R, Zeeck A (2002) Big effects from small changes: possible ways to explore nature’s chemical diversity. ChemBioChem 3:619–627

    Article  CAS  PubMed  Google Scholar 

  • Boisvert M (2005) Utilization of Bacillus thuringiensis var. israelensis (Bti)-based formulations for the biological control of mosquitoes in Canada. In: Abstracts of the 6th Pacific rim conference on the biotechnology of Bacillus thuringiensis and its environmental impact, Victoria, pp 87–93

    Google Scholar 

  • Bond JG, Marina CF, Williams T (2004) The naturally derived insecticides spinosad is highly toxic to Aedes and Anopheles mosquito larvae. Med Vet Entomol 18:50–56

    Article  CAS  PubMed  Google Scholar 

  • Brattsten LB, Hamilton GC, Sutherland DJ (2009) Insecticides recommended for mosquito control in New Jersey. New Jersey Agricultural Experiment Station, Publication no P-08001-01-08. http://www.hudsonregional.org/mosquito/Files/bmpmcnj.pdf

  • Bret BL, Larson LL, Schoonover JR et al (1997) Biological properties of spinosad. Down to Earth 52:6–13

    Google Scholar 

  • Broadwell AH, Baumann P (1986) Sporulation-associated activation of Bacillus sphaericus larvicide. Appl Environ Microbiol 52:758–764

    PubMed Central  CAS  PubMed  Google Scholar 

  • Charles JF, LeRoux CN (2000) Mosquitocidal bacterial toxins: diversity, mode of action and resistance phenomena. Mem Inst Oswaldo Cruz 95:201–206

    Article  CAS  PubMed  Google Scholar 

  • Charles JF, Kalfon A, Bourgouin C, de Barjac H (1988) Bacillus sphaericus asporogenous mutants: morphology, protein pattern and larvicidal activity. Ann Inst Pasteur Microbiol 139:243–259

    Article  CAS  PubMed  Google Scholar 

  • Charles JF, LeRoux C, DelĂ©cluse A (1996) Bacillus sphaericus toxins: molecular biology and mode of action. Annu Rev Entomol 41:451–472

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary HS, Yadav J, Shrivastava AR et al (2013) Antibacterial activity of actinomycetes isolated from different soil samples of Sheopur (a city of central India). J Adv Pharm Technol Res 4:118–123

    Article  PubMed Central  PubMed  Google Scholar 

  • Chui VWD, Wong KW, Tori KW (1995) Control of mosquito larvae (Diptera: Culicidae) using Bti and teflubenzuron: laboratory evaluation and semi-field test. Environ Int 21:433–440

    Article  CAS  Google Scholar 

  • Crickmore N, Bone EJ, Williams JA, Ellar DJ (1995) Contribution of the individual components of the δ-endotoxin crystal to the mosquitocidal activity of Bacillus thuringiensis subsp. israelensis. FEMS Microbiol Lett 131:249–254

    CAS  Google Scholar 

  • Darriet F, Duchon S, Hougard JM (2005) Spinosad: a new larvicide against insecticide-resistant mosquito larvae. J Am Mosq Control Assoc 21:495–496

    Article  CAS  PubMed  Google Scholar 

  • de Luna JS, dos Santos AF, de Lima MR et al (2005) A study of the larvicidal and molluscicidal activities of some medicinal plants from northeast Brazil. J Ethnopharmacol 97:199–206

    Article  Google Scholar 

  • Des Rochers B, Garcia R (1983) The efficacy of Bacillus sphaericus in controlling mosquitoes breeding in sewer effluent. Proc and papers Calif Mosq Vect Cont Assoc 51:35–37

    Google Scholar 

  • Devi PSV, Rao GVR, Gopalakrishnan S, Sivakumar G (2012) Environmental impact of microbial pesticides. In: Sharma HC, Dhillon MK, Sehrawat KL (eds) Environmental safety of biotech and conventional IPM technologies. Studium Press LLC, Houston, pp 261–272

    Google Scholar 

  • Dhanasekaran D, Sakthi V, Thajuddin N, Panneerselvam A (2010) Preliminary evaluation of Anopheles mosquito larvicidal efficacy of mangrove Actinobacteria. Int J Appl Biol Pharm Technol 1:374–381

    Google Scholar 

  • Djènontin A, Pennetier C, Zogo B et al (2014) Field efficacy of Vectobac GR as a mosquito larvicide for the control of Anopheline and Culicine mosquitoes in natural habitats in Benin, West Africa. PLoS One 9, e87934. doi:10.1371/journal.pone.0087934

    Article  PubMed Central  PubMed  Google Scholar 

  • Doull J, Vining L (1990) Nutritional control of actinorhodin production by Streptomyces coelicolor A (3) 2: suppressive effects of nitrogen and phosphate. Appl Microbiol Biotechnol 32:449–454

    Article  CAS  PubMed  Google Scholar 

  • Federici BA, Park HW, Bideshi DK et al (2003) Recombinant bacteria for mosquito control. J Exp Biol 206:3877–3885

    Article  CAS  PubMed  Google Scholar 

  • Fillinger U, Lindsay SW (2006) Suppression of exposure to malaria vectors by an order of magnitude using microbial larvicides in rural Kenya. Trop Med Int Health 11:1629–1642

    Article  CAS  PubMed  Google Scholar 

  • Fillinger U, Knols BG, Becker N (2003) Efficacy and efficiency of new Bacillus thuringiensis var israelensis and Bacillus sphaericus formulations against Afrotropical anophelines in Western Kenya. Trop Med Int Health 8:37–47

    Article  PubMed  Google Scholar 

  • Foda MS, Fawkia M, El-Beih FM et al (2010) Physiological formation of mosquitocidal toxin by a novel Bacillus thuringiensis isolate under solid state fermentation. Life Sci J 7:144–152

    Google Scholar 

  • Gadelhak GG, EL-Tarabily K, AL-Kaabi FK (2005) Insect control using chitinolytic soil actinomycetes as biocontrol agents. Int J Agric Biol 7:627–633

    Google Scholar 

  • Gautam K, Padma Kumar, Poonia S (2013) Larvicidal activity and GC-MS analysis of flavonoids of Vitex negundo and Andrographis paniculata against two vector mosquitoes Anopheles stephensi and Aedes aegypti. J Vector Borne Dis 50:171–178

    CAS  PubMed  Google Scholar 

  • Gibbs KE, Brautigam FC, Stubbs CS, Zibilske LM (1986) Experimental applications of Bti for larval black fly control: persistence and downstream carry, efficacy, impact on non-target invertebrates and fish feeding, Technical bulletin 123. Maine Agricultural Experiment Station, University of Maine, pp 1–25

    Google Scholar 

  • Glare TR, O’Callaghan M (1998) Environmental and health impacts of Bacillus thuringiensis israelensis. Report for the Ministry of Health, Biocontrol and Biodiversity, Grasslands Division, AgResearch, Lincoln

    Google Scholar 

  • Hertlein MB, Mavrotas C, Jousseaume C et al (2010) A review of spinosad as a natural mosquito product for larval mosquito control. J Am Mosq Control Assoc 26:67–87

    Article  CAS  PubMed  Google Scholar 

  • Ibarra JE, del RincĂłn MC, Noriega SOD et al (2003) Diversity of Bacillus thuringiensis strains from Latin America with insecticidal activity against different mosquito species. Appl Environ Microbiol 69:95269–95274

    Google Scholar 

  • Ignacimuthu S (2000) The role of botanicals in combating mosquitoes. In: John William S, Vincent S (eds) Recent trends in combating mosquitoes. School of Entomology and Centre for Natural Resources Management, PG and Research Department of Zoology, Loyola, Chennai, College pp 62–70

    Google Scholar 

  • Ignacimuthu S, Paulraj MG (2009) Non-chemical insect pest management. Curr Sci 97:136

    Google Scholar 

  • Ishiwata S (1901) On a kind of severe flacherie (sotto disease). Dainihon Sanshi Kaiho 114:1–5

    Google Scholar 

  • Jahan N, Jamali EH, Qamar MF (2013) Residual activity of Bacillus thuringiensis var. israelensis and Bacillus sphaericus against mosquito larvae. J Anim Plant Sci 23(4):1052–1059

    Google Scholar 

  • Johnson T (1998) CRC ethnobotany desk reference. CRC Press, Boca Raton

    Google Scholar 

  • Kumar S, Govindasamy R, Krishnan K et al (2011) Larvicidal activity of isolated compound 5-(2,4-dimethylbenzyl) pyrrolidin-2-one from marine Streptomyces VITSVK5 sp. against Rhipicephalus (Boophilus) microplus, Anopheles stephensi and Culex tritaeniorhynchus. Parasitol Res 112:215–226

    Google Scholar 

  • Lee SE (2000) Mosquito larvicidal activity of pipernonaline, a piperidine alkaloid derived from long pepper, Piper longum. J Am Mosq Control Assoc 16:245–247

    CAS  PubMed  Google Scholar 

  • Lee YW, Zairi J (2006) Field evaluation of Bacillus thuringiensis H-14 against Aedes mosquitoes. Trop Biomed 23:37–44

    CAS  PubMed  Google Scholar 

  • Liu ZL, Liu QZ, Du SS, Deng ZW (2012) Mosquito larvicidal activity of alkaloids and limonoids derived from Evodia rutaecarpa unripe fruits against Aedes albopictus (Diptera: Culicidae). Parasitol Res 111:991–996

    Article  PubMed  Google Scholar 

  • Maheswaran R, Sathish S, Ignacimuthu S (2008) Larvicidal activity of Leucas aspera (Willd.) against the larvae of Culex quinquefasciatus Say. and Aedes aegypti L. Int J Integr Biol 2:214–217

    Google Scholar 

  • Majambere S, Lindsay SW, Green C et al (2007) Microbial larvicides for malaria control in the Gambia. Malar J 6:76. doi:10.1186/1475-2875-6-76

    Article  PubMed Central  PubMed  Google Scholar 

  • Margalit J, Dean D (1985) The story of Bacillus thuringiensis var. israelensis (B.t.i.). J Am Mosq Cont Assoc 1:1–7

    CAS  Google Scholar 

  • Marina CF, Bond JG, Muñoz J et al (2012) Spinosad: a biorational mosquito larvicide for use in car tires in southern Mexico. Parasit Vectors 5:95

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mathew N, Anitha MG, Bala TS et al (2009) Larvicidal activity of Saraca indica, Nyctanthes arbor-tristis, and Clitoria ternatea extracts against three mosquito vector species. Parasitol Res 104:1017–1025

    Article  PubMed  Google Scholar 

  • Mishra SK, Keller JE, Miller JR et al (1987) Insecticidal and nematicidal properties of microbial metabolites. J Ind Microbiol 2:267–276

    Article  Google Scholar 

  • Miura T, Takahashi RM, Mulligan FS (1980) Effects of the bacterial mosquito larvicide, Bacillus thuringiensis serotype H-14 on selected aquatic organisms. Mosq News 40:619–622

    Google Scholar 

  • Montesinos E (2003) Development, registration and commercialization of microbial pesticides for plant protection. Int Microbiol 6:245–252

    Article  CAS  PubMed  Google Scholar 

  • Mulla SM (1991) Biological control of mosquitoes with entomopathogenic bacteria. Chinese Journal of Entomology special publication no 6, Proceedings of the IV national vector control symposium, Taichung, ROC, pp 93–104

    Google Scholar 

  • Mulla SM (1994) Mosquito control then, now, and in the future. J Am Mosq Cont Assoc 10:574–584

    CAS  Google Scholar 

  • Nerio LS, Olivero-Verbel J, Stashenko E (2010) Repellent activity of essential oils: a review. Bioresour Technol 101:372–378

    Article  CAS  PubMed  Google Scholar 

  • Opota O, Gauthier NC, Doye A et al (2011) Bacillus sphaericus binary toxin elicits host cell autophagy as a response to intoxication. PLoS One 6, e14682. doi:10.1371/journal.pone.0014682

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Padua LE, Ohba M, Aizawa K (1984) Isolation of a Bacillus thuringiensis strain (serotype 8a:8b) highly and selectively toxic against mosquito larvae. J Invertebr Pathol 44:12–17

    Article  Google Scholar 

  • Pampiglione S, Majori G, Petrangeli G, Romi R (1985) Avermectins, MK-933 and MK- 936, for mosquito control. Trans R Soc Trop Med Hyg 79:797–799

    Article  CAS  PubMed  Google Scholar 

  • Park HW, Mangum CM, Zhong H, Hayes SR (2007) Isolation of Bacillus sphaericus with improved efficacy against Culex quinquefasciatus. J Am Mosq Control Assoc 23:478–480

    Article  CAS  PubMed  Google Scholar 

  • Pascual M, Ahumada JA, Chaves LF et al (2006) Malaria resurgence in East African highlands: temperature trends revisited. Proc Natl Acad Sci U S A 103:5829–5834

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Patil SV, Patil CD, Salunkhe RB, Salunke BK (2010) Larvicidal activities of six plants extracts against two mosquito species, Aedes aegypti and Anopheles stephensi. Trop Biomed 27:360–365

    CAS  PubMed  Google Scholar 

  • Patz JA, Campbell-Lendrum D, Holloway T, Foley JA (2005) Impact of regional climate change on human health. Nature 438:310–317

    Article  CAS  PubMed  Google Scholar 

  • Paulraj MG, Reegan AD, Ignacimuthu S (2011) Toxicity of Benzaldehyde and Propionic acid against immature and adult stages of Aedes aegypti (Linn.) and Culex quinquefasciatus (Say) (Diptera: Culicidae). J Entomol 8:539–547

    Article  CAS  Google Scholar 

  • Phongsopitanun W, Suwanborirux K, Tanasupawat S (2014) Identification and antimicrobial activity of Streptomyces strains from Thai mangrove sediment. Thai J Pharm Sci 38:1–56

    Google Scholar 

  • Pinto da Silva L, Gonçales RA, Conceição FR et al (2011) Stability, oviposition attraction, and larvicidal activity of binary toxin from Bacillus sphaericus expressed in Escherichia coli. Appl Microbiol Biotechnol. doi:10.1007/s00253-011-380

    Google Scholar 

  • Poopathi S, Mani TR, Rao DR et al (1999a) Effect of Bacillus sphaericus and Bacillus thuringiensis var. israelensis on the ultrastructural changes in the midgut of Culex quinquefasciatus Say (Diptera: Culicidae). J Entomol Res 23:347–357

    Google Scholar 

  • Poopathi S, Kabilan L, Mani TR et al (1999b) A comparative ultrastructural studies on the midgut of Bacillus sphaericus resistant and susceptible Culex quinquefasciatus Say. Insect Environ 5:129–130

    Google Scholar 

  • Poopathi S, Thirugnanasambantham K, Mani C et al (2014) Isolation of mosquitocidal bacteria (Bacillus thuringiensis, B. sphaericus and B. cereus) from excreta of arid birds. Ind J Exp Biol 52:739–747

    Google Scholar 

  • Porter AG, Davidson EW, Liu JW (1993) Mosquitocidal toxins of Bacilli and their genetic manipulation for effective biological control of mosquitoes. Microbiol Rev 57:838–861

    PubMed Central  CAS  PubMed  Google Scholar 

  • Powell KA, Jutsum AR (1993) Technical and commercial aspects of biocontrol products. J Pestic Sci 37:315–321

    Article  Google Scholar 

  • Rajiv Gandhi M, Reegan AD, Sivaraman G et al (2014) Larvicidal and repellent activities of Tylophora indica (Burm. F.) Merr. (Asclepiadaceae) against Culex quinquefasciatus Say and Aedes aegypti L. (Diptera: Culicidae). Int J Pure App Zool 2:113–117

    Google Scholar 

  • Ramar M, Paulraj MG, Ignacimuthu S (2013a) Screening of pupicidal activity of some essential oils against Culex quinquefasciatus Say. Peak J Med Plant Res 1:9–12

    Google Scholar 

  • Ramar M, Paulraj MG, Ignacimuthu S (2013b) Preliminary screening of plant essential oils against larvae of Culex quinquefasciatus Say (Diptera: Culicidae). Afr J Biotechnol 12:6480–6483

    Article  Google Scholar 

  • Ramar M, Ignacimuthu S, Paulraj MG (2014) Biological activity of nine plant essential oils on the filarial vector mosquito, Culex quinquefasciatus Say (Insecta: Diptera: Culicidae). Int J Res Biol Sci 4:1–5

    Google Scholar 

  • Rana S, Salam MD (2014) Antimicrobial potential of Actinomycetes isolated from soil samples of Punjab, India. J Microbiol Exp 1:00010

    Google Scholar 

  • Rao KV, Chattopadhyay SK, Reddy GC (1990) Flavonoids with mosquito larval toxicity-tangeratin, daidzein and genistein crystal production, isolation and purification; Streptomyces spp. culture; Insecticide. J Agric Food Chem 38:1427–1430

    Article  CAS  Google Scholar 

  • Rashad FM, Saleh WD, Nasr M, Fathy HM (2012) Identification of mosquito larvicidal bacterial strains isolated from north Sinai in Egypt. AMB Express 2:9

    Article  PubMed Central  PubMed  Google Scholar 

  • Reegan AD, Paulraj MG, Ignacimuthu S (2013a) Larvicidal, ovicidal, repellent and histopathological effects of orange peel (Citrus sinensis Osbeck) extracts on Anopheles stephensi Liston mosquitoes (Diptera: Culicidae). Int J Appl Biol 1:24–29

    Google Scholar 

  • Reegan AD, Kinsalin VA, Paulraj MG, Ignacimuthu S (2013b) Larvicidal, ovicidal, and repellent activities of marine sponge Cliona celata (Grant) extracts against Culex quinquefasciatus Say and Aedes aegypti L. (Diptera: Culicidae). ISRN Entomol. doi:10.1155/2013/315389

    Google Scholar 

  • Reegan AD, Kinsalin VA, Paulraj MG, Ignacimuthu S (2015) Larvicidal, ovicidal and repellent activities of marine sponge Cliona celata (Grant) extracts against Anopheles stephensi Liston (Diptera: Culicidae). Asian Pac J Trop Med 8(1):29–34

    Google Scholar 

  • Reegan AD, Paulraj MG, Ignacimuthu S (2014a) Effect of Niloticin, a protolimonoid isolated from Limonia acidissima L. (Rutaceae) on the immature stages of dengue vector Aedes aegypti L. (Diptera: Culicidae). Acta Trop 139:67–76

    Article  CAS  PubMed  Google Scholar 

  • Reegan AD, Rajiv Gandhi M, Paulraj MG, Ignacimuthu S (2014b) Larvicidal activity of medicinal plant extracts against Culex quinquefasciatus Say and Aedes aegypti L. mosquitoes (Diptera: Culicidae). Int J Pure Appl Zool 2:205–210

    Google Scholar 

  • Romi R, Proietti S, Di Luca M, Cristofaro M (2006) Laboratory evaluation of the bioinsecticide spinosad for mosquito control. J Am Mosq Control Assoc 22:93–96

    Article  CAS  PubMed  Google Scholar 

  • Rungrod A, Tjahaja NK, Soonsanga S et al (2009) Bacillus sphaericus Mtx1 and Mtx2 toxins co-expressed in Escherichia coli are synergistic against Aedes aegypti larvae. Biotechnol Lett 31:551–555

    Article  CAS  PubMed  Google Scholar 

  • Rydzanicz K, SobczyĹ„ski M, Guz-Regner K (2010) Comparison of the activity and persistence of microbial insecticides based on Bacillus thuringiensis israelensis and Bacillus sphaericus in organic polluted mosquito-breeding sites. Pol J Environ Stud 19:1317–1323

    Google Scholar 

  • Salgado VL (1997) The modes of action of spinosad and other insect control products. Down to Earth 52:35–43

    Google Scholar 

  • Salgado VL (1998) Studies on the mode of action of spinosad: insect symptoms and physiological correlates. Pestic Biochem Physiol 60:91–102

    Article  CAS  Google Scholar 

  • Sanchez S, Demain AL (2002) Metabolic regulation of fermentation processes. Enzyme Microb Technol 31:895–906

    Article  CAS  Google Scholar 

  • Schneider M, Smagghe C, Viñuela E (2004) Comparative effects of several insect growth regulators and spinosad on the different developmental stages of the endoparasitoid Hyposoter didymator (Thunberg). Pesticides and Beneficial Organisms. IOBC/WPRS Bull 27:13–19

    Google Scholar 

  • Singh GJP, Gill SS (1988) An electron microscope study of the toxic action of Bacillus sphaericus in Culex quinquefasciatus larvae. J Invertebr Pathol 52:237–247

    Article  CAS  PubMed  Google Scholar 

  • Sivaraman G, Paulraj MG, Rajiv Gandhi M et al (2014) Larvicidal potential of Hydnocarpus pentandra (Buch.-Ham.) Oken seed extracts against Aedes aegypti Linn. and Culex quinquefasciatus (Say) (Diptera: Culicidae). Int J Pure Appl Zool 2:109–112

    Google Scholar 

  • Smith AW, Camara-Artigas A, Allen JP (2004) Crystallization of the mosquito-larvicidal binary toxin produced by Bacillus sphaericus. Acta Crystallogr D: Biol Crystallogr 60:952–953

    Article  Google Scholar 

  • SoberĂłn M, LĂłpez-DĂ­az JA, Bravo A (2013) Cyt toxins produced by Bacillus thuringiensis: a protein fold conserved in several pathogenic microorganisms. Peptides 41:87–93

    Article  PubMed  Google Scholar 

  • Subramani R, Aalbersberg W (2012) Marine actinomycetes: an ongoing source of novel bioactive metabolites. Microbiol Res 167:571–580

    Article  CAS  PubMed  Google Scholar 

  • Taborsky V (1992) Small-scale processing of microbial pesticides, FAO agricultural services bulletin no 96. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Theiling KM, Croft BA (1988) Pesticide side-effects on arthropod natural enemies: a database summary. Agri Ecosyst Environ 21:191–218

    Article  CAS  Google Scholar 

  • Thompson GD, Dutton R, Sparks TC (2000) Spinosad-a case study: an example from a natural products discovery programme. Pest Manag Sci 56:696–702

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (US EPA) (2000) For your information: larvicides for mosquito control. www.cmmcp.org/larvfs.pdf

  • Usta C (2013) Microorganisms in biological pest control – A review (bacterial toxin application and effect of environmental factors). In: Marina Silva-Opps (ed) Current progress in biological research. InTech. Croatia. doi:10.5772/55786. ISBN 978-953-51-1097-2

    Google Scholar 

  • Vijayakumar R, Murugesan S, Cholarajan A, Sakthi V (2010) Larvicidal potentiality of marine actinomycetes isolated from Muthupet mangrove, Tamil Nadu, India. Int J Microbiol Res 1:179–183

    Google Scholar 

  • Vijayan V, Balaraman K (1991) Metabolites of fungi & actinomycetes active against mosquito larvae. Indian J Med Res 93:115–117

    CAS  PubMed  Google Scholar 

  • WHO (World Health Organization) (1985) Information consultation on the development of Bacillus sphaericus as a Microbial larvicide, vol 85. World Health Organization, Geneva, pp 1–24

    Google Scholar 

  • WHO (World Health Organization) (1999) International programme on chemical safety (IPCS): microbial pest control agent Bacillus thuringiensis. Environ Health Crit 217:1–105

    Google Scholar 

  • WHO (World Health Organization) (2010) Spinosad DT in drinking-water: use for vector control in drinking-water sources and containers. WHO/HSE/WSH/10.01/12. WHO, Geneva

    Google Scholar 

  • WHO (World Health Organization) (2013) Global malaria programme. World malaria report. WHO, Geneva

    Google Scholar 

  • Wirth M, Georghiou GP, Federici BA (1997) CytA enables CryIV endotoxins of Bacillus thuringiensis to overcome high levels of CryIV resistance in the mosquito Culex quinquefasciatus. Proc Natl Acad Sci U S A 9:10536–10540

    Article  Google Scholar 

  • Wirth MC, Walton WE, Federici BA (2000) Cyt1A from Bacillus thuringiensis restores toxicity of Bacillus sphaericus against resistant Culex quinquefasciatus (Diptera: Culicidae). J Med Entomol 37:401–407

    Article  CAS  PubMed  Google Scholar 

  • Zarroug IMA, Nugud AD, Bashir AK, Mageed AA (1988) Evaluation of Sudanese plant extracts as mosquito larvicides. Pharm Biol 26:77–80

    Article  Google Scholar 

  • Zeigler DR (1999) Bacillus genetic stock center catalog of strains, 7th edn, Part 2: Bacillus thuringiensis and Bacillus cereus. Department of Microbiology, The Ohio State University, Columbus

    Google Scholar 

  • Zizka Z, Weiser J, Blumauerova M, Jizba J (1989) Ultrastructural effects of macroterrolides of Streptomyces griseus LKS-1 in tissues of Culex pipiens larvae- monactin, dinactin, triactin and nonactin preparation; insecticide activity. Cytobios 58:85–91

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors acknowledge Entomology Research Institute for facilities. We acknowledge Dr. Vijay Veer, Director of Defence Research Laboratory, Tezpur, for his encouragement. We also thank DRDO for financial assistance through a project (No. ERIP/ER/1004554 M/01/1357).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gabriel Paulraj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Paulraj, M.G., Kumar, P.S., Ignacimuthu, S., Sukumaran, D. (2016). Natural Insecticides from Actinomycetes and Other Microbes for Vector Mosquito Control. In: Vijay Veer, Gopalakrishnan, R. (eds) Herbal Insecticides, Repellents and Biomedicines: Effectiveness and Commercialization. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2704-5_5

Download citation

Publish with us

Policies and ethics