Skip to main content

Role of Nonpathogenic Fungi in Inducing Systemic Resistance in Crop Plants Against Phytopathogens

  • Chapter
  • First Online:
Microbial Inoculants in Sustainable Agricultural Productivity

Abstract

Plants are surrounded by a plethora of microorganisms, including fungal strains. Fungi associated with plants are known to exert their beneficial effects by helping them in absorption of water and nutrients and protecting them against harmful microorganisms. Protective effect is generally mediated by performing antagonistic action on pathogens and pests. However, along with their direct effects, they have been shown to trigger defense responses in plants against various pathogenic species, including members of bacterial, fungal and viral groups. This type of resistance mechanism triggered by nonpathogenic microorganisms is termed as induced systemic resistance (ISR) and has been observed in several strains of fungi. Some of the important nonpathogenic fungal strains found to induce ISR in crop plants include mycorrhiza, Trichoderma sp., Penicillium sp., Fusarium sp., Phoma sp., etc. They have been shown to trigger defense responses via multiple signaling pathways involving salicylic acid, jasmonic acid or ethylene. Candidate signaling molecules, also known as elicitors, have been recently identified, particularly from Trichoderma sp. and shown to protect the plants from pathogens. Thus, with respect to their role in ISR, this chapter highlights the potential of nonpathogenic fungal strains in controlling plant diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abohatem M, Chakrafi F, Jaiti F et al (2011) Arbuscular mycorrhizal fungi limit incidence of Fusarium oxysporum f. sp. albedinis on date palm seedlings by increasing nutrient contents, total phenols and peroxidase activities. Open Hortic J 4:10–16

    Article  CAS  Google Scholar 

  • Ahmed AS, Pérez Sánchez C, Candela MA (2000) Evaluation of induction of systemic resistance in pepper plants (Capsicum annuum) to Phytophthora capsici using Trichoderma harzianum and its relation with capsidiol accumulation. Eur J Plant Pathol 106:817–824

    Article  Google Scholar 

  • Bacon CW, White J (2000) Microbial endophytes. CRC Press, Boca Raton

    Google Scholar 

  • Benhamou N, Garand C, Goulet A (2002) Ability of nonpathogenic Fusarium oxysporum strain Fo47 to induce resistance against Pythium ultimum infection in cucumber. Appl Environ Microbiol 68:4044–4060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benhamou N, Kloepper JW, Tuzun S (1994) Induction of systemic resistance to Fusarium crown rot and root rot in tomato plants by seed treatment with chitosan. Phytopathology 84:1432–1444

    Article  CAS  Google Scholar 

  • Bittel P, Robatzek S (2007) Microbe-associated molecular patterns (MAMPs) probe plant immunity. Curr Opin Plant Biol 10:335–341

    Article  CAS  PubMed  Google Scholar 

  • Boudart G, Charpentier M, Lafitte C et al (2003) Elicitor activity of a fungal endopolygalacturonase in tobacco requires a functional catalytic site and cell wall localization. Plant Physiol 131:93–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brotman Y, Briff E, Viterbo A et al (2008) Role of swollenin, an expansin-like protein from Trichoderma, in plant root colonization. Plant Physiol 147:779–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buxdorf K, Rahat I, Gafni A et al (2013) The epiphytic fungus Pseudozyma aphidis induces jasmonic acid- and salicylic acid/nonexpressor of PR1-independent local and systemic resistance. Plant Physiol 161:2014–2022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buxdorf K, Rahat I, Gafni A et al (2014) The epiphytic fungus Pseudozyma aphidis induces jasmonic acid- and salicylic acid/nonexpressor of PR1-independent local and systemic resistance. Plant Physiol 16

    Google Scholar 

  • Cai F, Yu G, Wang P et al (2013) Harzianolide, a novel plant growth regulator and systemic resistance elicitor from Trichoderma harzianum. Plant Physiol Biochem 73:106–113

    Article  CAS  PubMed  Google Scholar 

  • Calderon AA, Zapata JM, Munoz R et al (1993) Resveratrol production as a part of the hypersensitive-like response of grapevine cells to an elicitor from Trichoderma viride. New Phytol 124:455–463

    Article  CAS  Google Scholar 

  • Chang PL, Xu Y, Narasimhan ML et al (1997) Induction of pathogen resistance and pathogenesis-related genes in tobacco by a heat-stable Trichoderma mycelial extract and plant signal messengers. Physiol Plantarum 100:341–352

    Article  CAS  Google Scholar 

  • Chinnasamy G (2006) A proteomics perspective on biocontrol and plant defense mechanism. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 233–255

    Chapter  Google Scholar 

  • Conrath U (2009) Priming of induced plant defense responses. Adv Bot Res 51:362–395

    Google Scholar 

  • Cook RJ (1993) Making greater use of introduced microorganisms for biological control of plant pathogens. Annu Rev Phytopathol 31:53–80

    Article  CAS  PubMed  Google Scholar 

  • Cordier C, Pozo IMJ, Barea JM et al (1998) Cell defense responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus. Mol Plant Microbe In 11:1017–1028

    Article  CAS  Google Scholar 

  • Cordo CA, Monaco CI, Segarra CI et al (2007) Trichoderma spp. as elicitors of wheat plant defense responses against Septoria tritici. Biocontrol Sci Technol 17:687–698

    Article  Google Scholar 

  • Dababat AEA, Sikora RA (2007) Induced resistance by the mutualistic endophyte, Fusarium oxysporum strain 162, toward Meloidogyne incognita on tomato. Biocontrol Sci Technol 17:969–975

    Article  Google Scholar 

  • Damalas CA, Eleftherohorinos IG (2011) Pesticide exposure, safety issues and risk assessment indicators. Int J Environ Res Public Health 8:1402–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Meyer G, Bigirimana J, Elad Y et al (1998) Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea. Eur J Plant Pathol 104:279–286

    Article  Google Scholar 

  • Diehl K, Rebensburg P, Lentzsch P (2013) Field application of non-pathogenic Verticillium dahliae genotypes for regulation of wilt in strawberry plants. Am J Plant Sci 4:24–32

    Article  Google Scholar 

  • Djonović S, Pozo MJ, Dangott LJ et al (2006) Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Mol Plant Microbe In 19:838–853

    Article  Google Scholar 

  • Djonovic S, Vargas WA, Kolomiets MV et al (2007) A proteinaceous elicitor Sm1 from the beneficial fungus Trichoderma virens is required for induced systemic resistance in maize. Plant Physiol 145:875–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doan TT, Jäschke D, Ludwig-Müller J (2008) An endophytic fungus induces tolerance against the clubroot pathogen Plasmodiophora brassicae in Arabidopsis thaliana and Brassica rapa roots. Acta Hortic 867:173–180

    Google Scholar 

  • Engelberth J, Koch T, Schüler G et al (2001) Ion channel-forming alamethicin is a potent elicitor of volatile biosynthesis and tendril coiling. Cross talk between jasmonate and salicylate signaling in lima bean. Plant Physiol 125:369–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enkerli J, Felix G, Boller T (1999) The enzymatic activity of fungal xylanase is not necessary for its elicitor activity. Plant Physiol 121:391–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escande AR, Echandi E (1991) Protection of potato from Rhizoctonia canker with binucleate Rhizoctonia fungi. Plant Pathol 40:197–202

    Article  Google Scholar 

  • Hanania U, Avni A (1997) High-affinity binding site for ethylene-inducing xylanase elicitor on Nicotiana tabacum membranes. Plant J 12:113–120

    Article  CAS  Google Scholar 

  • Hanson LE, Howell CR (2004) Elicitors of plant defense responses from biocontrol strains of Trichoderma virens. Phytopathology 94:171–176

    Article  CAS  PubMed  Google Scholar 

  • Hause B, Maier W, Miersch O et al (2002) Induction of jasmonate biosynthesis in arbuscular mycorrhizal barley roots. Plant Physiol 130:1213–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermosa R, Viterbo A, Chet I et al (2012) Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158:17–25

    Article  CAS  PubMed  Google Scholar 

  • Horinouchi H, Muslim A, Hyakumachi M (2010) Biocontrol of Fusarium wilt of spinach by the plant growth promoting fungus Fusarium equiseti GF183. J Plant Pathol 92:249–254

    Google Scholar 

  • Hossain MA, Sultana F, Kubota M et al (2008) Differential inducible defense mechanisms against bacterial speck pathogen in Arabidopsis thaliana by plant-growth-promoting-fungus Penicillium sp. GP16-2 and its cell free filtrate. Plant Soil 304:227–239

    Article  CAS  Google Scholar 

  • Hossain MM, Sultana F, Kubota M (2007) The plant growth-promoting fungus Penicillium simplicissimum GP17-2 induces resistance in Arabidopsis thaliana by activation of multiple defense signals. Plant Cell Physiol 48:1724–1736

    Article  CAS  PubMed  Google Scholar 

  • Howell CR, Hanson LE, Stipanovic RD et al (2000) Induction of terpenoid synthesis in cotton roots and control of Rhizoctonia solani by seed treatment with Trichoderma virens. Phytopathology 90:248–252

    Article  CAS  PubMed  Google Scholar 

  • Iriti M, Faoro F (2009) Chitosan as a MAMP, searching for a PRR. Plant Signal Behav 4:66–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jabaji‐Hare S, Chamberland H, Charest PM (1999) Cell wall alterations in hypocotyls of bean seedlings protected from Rhizoctonia stem canker by a binucleate Rhizoctonia isolate. Mycol Res 103:1035–1043

    Article  Google Scholar 

  • Jogaiah S, Abdelrahman M, Tran LP et al (2013) Characterization of rhizosphere fungi that mediate resistance in tomato against bacterial wilt disease. J Exp Bot 64:3829–3842

    Article  CAS  PubMed  Google Scholar 

  • Kaku H, Nishizawa Y, Ishii Minami N et al (2006) Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc Natl Acad Sci U S A 103:11086–11091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katsy EI (ed) (2014) Plasticity in plant-growth-promoting and phytopathogenic bacteria. Springer, New York

    Google Scholar 

  • Kawamura Y, Takenaka S, Hase S et al (2009) Enhanced defense responses in Arabidopsis induced by the cell wall protein fractions from Pythium oligandrum require SGT1, RAR1, NPR1 and JAR1. Plant Cell Physiol 50:924–934

    Article  CAS  PubMed  Google Scholar 

  • Kernaghan G, Patriquin G (2011) Host associations between fungal root endophytes and boreal trees. Microbial Ecol. doi:10.1007/s00248-011-985

    Google Scholar 

  • Kharwar RN, Gond SK, Kumar A et al (2010) A comparative study of endophytic and epiphytic fungal association with leaf of Eucalyptus citriodora Hook., and their antimicrobial activity. World J Microbiol Biotechnol 26:1941–1948

    Article  Google Scholar 

  • Kim YH, Yeo WH, Kim YS et al (2000) Antiviral activity of antibiotic peptaibols, chrysospemins B and D, produced by Apiocrea sp. 14T against TMV infection. J Microbiol Biotechnol 10:522–528

    CAS  Google Scholar 

  • Klemptner RL, Sherwood JS, Tugizimana F et al (2014) Ergosterol, an orphan fungal microbe-associated molecular pattern (MAMP). Mol Plant Pathol 15:747–761

    Article  CAS  PubMed  Google Scholar 

  • Kojima H, Hossain MM, Kubota M et al (2013) Involvement of the salicylic acid signaling pathway in the systemic resistance induced in Arabidopsis by plant growth-promoting fungus Fusarium equiseti GF 19-1. J Oleo Sci 62:415–426

    Article  CAS  PubMed  Google Scholar 

  • Korolev N, Rav David D, Elad Y (2008) The role of phytohormones in basal resistance and Trichoderma-induced systemic resistance to Botrytis cinerea in Arabidopsis thaliana. Biocontrol 53:667–68310

    Article  CAS  Google Scholar 

  • Lahlali R, McGregor L, Song T et al (2014) Heteroconium chaetospira induces resistance to clubroot via upregulation of host genes involved in jasmonic acid, ethylene, and auxin biosynthesis. PLoS One 9:1–9

    Article  Google Scholar 

  • Lee C, Lee Y, Jeun Y (2005) Observations of infection structures on the leaves of cucumber plants pre-treated with arbuscular mycorrhiza Glomus intraradices after challenge inoculation with Colletotrichum orbiculare. Plant Pathol J 21:237–243

    Article  Google Scholar 

  • Maciá-Vicente JG, Jansson H, Abdullah SK et al (2008) Fungal root endophytes from natural vegetation in Mediterranean environments with special reference to Fusarium spp. FEMS Microbiol Ecol 64:90–105

    Article  PubMed  Google Scholar 

  • Madi L, Katan J (1998) Penicillium janczewskii and its metabolites, applied to leaves, elicit systemic acquired resistance to stem rot caused by Rhizoctonia solani. Physiol Mol Plant Pathol 53:163–175

    Article  CAS  Google Scholar 

  • Manandhar HK, Jorgensen HJL, Mathur SB et al (1998) Suppression of rice blast by preinoculation with avirulent Pyricularia oryzae and the non-rice pathogen Bipolaris sorokiniana. Phytopathology 88:735–739

    Article  CAS  PubMed  Google Scholar 

  • Martin F, Kamoun S (eds) (2011) Effectors in plant-microbe interactions. Wiley, Chichester

    Google Scholar 

  • Martinez C, Blanc F, Le Claire E et al (2001) Salicylic acid and ethylene pathways are differentially activated in melon cotyledons by active or heat-denatured cellulase from Trichoderma longibrachiatum. Plant Physiol 127:334–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohamed N, Lherminier J, Farmer MJ et al (2007) Defense responses in grapevine leaves against Botrytis cinerea induced by application of a Pythium oligandrum strain or its elicitin, oligandrin to roots. Phytopathology 97:611–620

    Article  CAS  PubMed  Google Scholar 

  • Morita S, Azuma M, Aoba T, Satou H, Narisawa K et al (2003) Induced systemic resistance of Chinese cabbage to bacterial leaf spot and Alternaria leaf spot by the root endophytic fungus, Heteroconium chaetospira. J Gen Plant Pathol 69:71–75

    Article  Google Scholar 

  • Mukherjee PK, Wiest A, Ruiz N et al (2011) Two classes of new peptaibols are synthesized by a single non-ribosomal peptide synthetase of Trichoderma virens. J Biol Chem 286:4544–4554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naznin HA, Kiyohara D, Kimura M et al (2014) Systemic resistance induced by volatile organic compounds emitted by plant growth-promoting fungi in Arabidopsis thaliana. PLoS One 9:1–10

    Article  Google Scholar 

  • Newman M, Sundelin T, Nielsen JT et al (2013) MAMP (microbe-associated molecular pattern) triggered immunity in plants. Front Plant Sci 4:1–14

    Article  Google Scholar 

  • Ngueko RB, Ying S, Tong X (2002) Induced resistance in rice plants by Trichoderma harzianum P1 and its efficiency to Magnaporthe grisea. CRRN 10:16–18

    Google Scholar 

  • Nicoletti R, Fiorentino A, Scognamiglio M (2014) Endophytism of Penicillium species in woody plants. Open Mycol J 8:1–26

    Article  Google Scholar 

  • Pozo MJ, Cordier C, Dumas-Gaudot E et al (2002) Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. J Exp Bot 53:525–534

    Article  CAS  PubMed  Google Scholar 

  • Reglinski T, Newton AC, Lyon GD (1994) Assessment of the ability of yeast-derived elicitors to control powdery mildew in the field. J Plant Dis Prot 101:1–10

    CAS  Google Scholar 

  • Ross AF (1961) Systemic acquired resistance induced by localized virus infection in plants. Virology 14:340–358

    Article  CAS  PubMed  Google Scholar 

  • Salas-Marina AM, Silva-Flores MA et al (2011) The plant growth-promoting fungus Aspergillus ustus promotes growth and induces resistance against different lifestyle pathogens in Arabidopsis thaliana. J Microbiol Biotechnol 21:686–696

    Article  PubMed  Google Scholar 

  • Salazar SM, Grellet CF, Chalfoun NR et al (2013) Avirulent strain of Colletotrichum induces a systemic resistance in strawberry. Eur J Plant Pathol 135:877–888

    Article  CAS  Google Scholar 

  • Segarra G, Casanova E, Bellido D et al (2007) Proteome, salicylic acid, and jasmonic acid changes in cucumber plants inoculated with Trichoderma asperellum strain T34. Proteomics 7:3943–3952

    Article  CAS  PubMed  Google Scholar 

  • Segarra G, Van der Ent S, Trillas I et al (2009) MYB72, a node of convergence in induced systemic resistance triggered by a fungal and a bacterial beneficial microbe. Plant Biol 11:90–96

    Article  CAS  PubMed  Google Scholar 

  • Shibuya N, Minami E (2001) Oligosaccharide signalling for defence responses in plant. Physiol Mol Plant Pathol 59:223–233

    Article  CAS  Google Scholar 

  • Shoresh M, Yedidia I, Chet I (2005) Involvement of jasmonic acid⁄ethylene signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T203. Phytopathology 95:76–84

    Article  CAS  PubMed  Google Scholar 

  • Sriram S, Manasa SB, Savitha MJ (2009) Potential use of elicitors from Trichoderma in induced systemic resistance for the management of Phytophthora capsici in red pepper. J Biol Control 23:449–456

    Google Scholar 

  • Stacey G, Keen NT (eds) (1996) Plant-microbe interactions, vol 1. Springer, Berlin

    Google Scholar 

  • Stein E, Molitor A, Kogel KH et al (2008) Systemic resistance in Arabidopsis conferred by the mycorrhizal fungus Piriformospora indica requires jasmonic acid signaling and the cytoplasmic function of NPR1. Plant Cell Physiol 49:1747–1751

    Article  CAS  PubMed  Google Scholar 

  • Sultana F, Hossain MM, Kubota M et al (2008) Elicitation of systemic resistance against the bacterial speck pathogen in Arabidopsis thaliana by culture filtrates of plant growth-promoting fungi. Can J Plant Pathol 30:196–205

    Article  Google Scholar 

  • Sultana F, Hossain MM, Kubota M et al (2009) Induction of systemic resistance in Arabidopsis thaliana in response to a culture filtrate from a plant growth-promoting fungus, Phoma sp. GS8-3. Plant Biol (Stuttg) 11:97–104

    Article  CAS  Google Scholar 

  • Sun C, Shao Y, Vahabi K et al (2014) The beneficial fungus Piriformospora indica protects Arabidopsis from Verticillium dahliae infection by downregulation plant defense responses. BMC Plant Biol 14:268

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamma L, Thüriga B, Fliessbacha A et al (2011) Elicitors and soil management to induce resistance against fungal plant diseases. NJAS – Wagen J Life Sci 58:131–137

    Article  Google Scholar 

  • Thuerig B, Felix G, Binder A et al (2006) An extract of Penicillium chrysogenum elicits early defense-related responses and induces resistance in Arabidopsis thaliana independently of known signaling pathways. Physiol Mol Plant Pathol 67:180–193

    Article  Google Scholar 

  • Ushamalini C, Nakkeeran P, Marimuthu T (2008) Induction of plant defence enzymes in turmeric plants by Trichoderma viride. Arch Phytopathol Plant Protect 4:79–93

    Article  Google Scholar 

  • Vadassery J, Ranf S, Drzewiecki C et al (2009) A cell wall extract from the endophytic fungus Piriformospora indica promotes growth of Arabidopsis seedlings and induces intracellular calcium elevation in roots. Plant J 59:193–206

    Article  CAS  PubMed  Google Scholar 

  • Van der Ent S, Van Wees SCM, Pieterse CMJ (2009) Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes. Phytochemistry 70:1581–1588

    Article  PubMed  Google Scholar 

  • Viterbo A, Wiest A, Brotman Y et al (2007) The 18mer peptaibols from Trichoderma virens elicit plant defence responses. Mol Plant Pathol 8:737–746

    Article  CAS  PubMed  Google Scholar 

  • Waller F, Achatz B, Baltruschat H et al (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance and higher yield. PNAS 102:13386–13391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan J, Zhang X, Stacey G (2008) Chitin signaling and plant disease resistance. Plant Signal Behav 3(10):831–833

    Article  PubMed  PubMed Central  Google Scholar 

  • Wehner J, Antunes PM, Powell JR et al (2009) Plant pathogen protection by arbuscular mycorrhizas: a role for fungal diversity? Pedobiologia 53:197–201. doi:10.1016/j.pedobi.2009.10.002

    Article  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  CAS  PubMed  Google Scholar 

  • Wua Y, Yia G, Peng X et al (2013) Systemic acquired resistance in Cavendish banana induced by infection with an incompatible strain of Fusarium oxysporum f. sp. cubense. J Plant Physiol 170:1039–1046

    Article  Google Scholar 

  • Yamagiwa Y, Inagaki Y, Ichinose Y et al (2011) Talaromyces wortmannii FS2 emits b-caryophyllene, which promotes plant growth and induces resistance. J Gen Plant Pathol 77:336–341

    Article  CAS  Google Scholar 

  • Yedidia I, Shoresh M, Kerem Z et al (2003) Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. Appl Environ Microbiol 69:7343–7353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yedidia I, Benhamou N, Chet I (1999) Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum. Appl Environ Microbiol 65:1061–1070

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yedidia I, Benhamou N, Kapulnikc Y et al (2000) Induction and accumulation of PR proteins activity during early stages of root colonization by the mycoparasite Trichoderma harzianum strain T-203. Plant Physiol Biochem 38:863–873

    Article  CAS  Google Scholar 

  • Yoshioka Y, Ichikawa H, Naznin HA (2012) Systemic resistance induced in Arabidopsis thaliana by Trichoderma asperellum SKT-1, a microbial pesticide of seedborne diseases of rice. Pest Manag Sci 68:60–66

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Kars I, Essenstam B, Liebrand TWH et al (2014) Fungal endopolygalacturonases are recognized as microbe-associated molecular patterns by the Arabidopsis receptor-like protein responsiveness to Botrytis polygalacturonase. Plant Physiol 164:352–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zook MN, Kuć JA (1987) Differences in phytoalexin elicitation by Phytophthora infestans and Helminthosporium carbonum in potato. Phytopathology 77:1217–1220

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shachi Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Singh, S. (2016). Role of Nonpathogenic Fungi in Inducing Systemic Resistance in Crop Plants Against Phytopathogens. In: Singh, D., Singh, H., Prabha, R. (eds) Microbial Inoculants in Sustainable Agricultural Productivity. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2644-4_5

Download citation

Publish with us

Policies and ethics