Skip to main content

Biomedical Applications of Heat Shock Proteins

  • Chapter
  • First Online:
Biomedical Applications of Natural Proteins

Part of the book series: SpringerBriefs in Biochemistry and Molecular Biology ((BRIEFSBIOCHEM))

  • 764 Accesses

Abstract

Heat shock proteins (HSPs) constitute a heterogeneous group of molecules which are phylogenetically conserved and initially known for their role in proper folding of nascent or misfolded proteins. Their expression is increased due to different stresses. Initially discovered due to heat stress, HSPs came beyond their role as molecular chaperones. Now there is evidence that HSPs perform functions more than what they were believed to earlier. There are reports that show that HSPs are actively involved in cell signaling and act as anti-inflammatory and pro-inflammatory agents in normal and in different ailments. Normally, HSPs are found inside the cell but they are also found secreted into the extracellular milieu and displayed onto the cell surface to represent different cellular conditions. While present on the cell surface they also carry processed peptides of the respective cell. Their solubility nature evokes most of the immune modulatory effects on different cell types. This versatile nature of HSPs can be employed for different biomedical applications. HSPs, both as diagnostic markers as well as drug targets in the field of autoimmune diseases, different cancers, are discussed here. Few non-biomedical but commercially important applications are also discussed in brief.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ritossa F (1962) New puffing pattern induced by temperature shock and DNP in Drosophila. Experientia 18:571–573

    Article  CAS  Google Scholar 

  2. Tissieres A, Mitchell HK, Tracey UM (1974) Protein synthesis in salivary glands of D. melanogaster relation to chromosome puffs. J Mol Biol 84:389–398

    Article  CAS  PubMed  Google Scholar 

  3. Manjunatha HB, Rajesh RK, Aparna HS (2010) Silkworm thermal biology: a review of heat shock response, heat shock proteins and heat acclimation in the domesticated silkworm Bombyx mori. J Insect Sci 10:189

    Article  Google Scholar 

  4. Kaigorodova EV, Bogatyuk MV (2014) Heat shock proteins as prognostic markers of cancer. Curr Cancer Drug Targets [Epub ahead of print]

    Google Scholar 

  5. Srivastava P (2002) Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol 2:185–194

    Article  CAS  PubMed  Google Scholar 

  6. Detanico T, Rodrigues L, Sabritto AC, Keisermann M, Bauer ME, Zwickey H, Bonorino C (2004) Mycobacterial heat shock protein 70 induces interleukin-10 production: immunomodulation of synovial cell cytokine profile and dendritic cell maturation. Clin Exp Immunol 135:336–342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Bethke K, Staib F, Distler M, Schmitt U, Jonuleit H, Enk AH, Galle PR, Heike M (2002) Different efficiency of heat shock proteins to activate human monocytes and dendritic cells: superiority of HSP60. J Immunol 169:6141–6148

    Article  CAS  PubMed  Google Scholar 

  8. Yoshida N, Oeda K, Watanabe E, Mikami T, Fukita Y et al (2001) Protein function: chaperonin turned insect toxin. Nat 411:44

    Article  CAS  Google Scholar 

  9. De AK, Kodys KM, Yeh BS, Miller-Graziano C (2000) Exaggerated human monocyte IL-10 concomitant to minimal TNF-α induction by heat-shock protein 27 (Hsp27) suggests Hsp27 is primarily an anti-inflammatory stimulus. J Immunol 165:3951–3958

    Article  CAS  PubMed  Google Scholar 

  10. Morton H (1998) Early pregnancy factor: an extracelluar chaperonin 10 homologue. Immunol Cell Biol 76:483–496

    Article  CAS  PubMed  Google Scholar 

  11. Massa M, Passalia M, Manzoni SM, Campanelli R, Ciardelli L et al (2007) Differential recognition of heat-shock protein dnaJ-derived epitopes by effector and Treg cells leads to modulation of inflammation in juvenile idiopathic arthritis. Arthritis Rheum 56:1648–1657

    Article  CAS  PubMed  Google Scholar 

  12. Van Eden W, Wick G, Albani S, Cohen I (2007) Stress, heat shock proteins, and autoimmunity: how immune responses to heat shock proteins are to be used for the control of chronic inflammatory diseases. Ann N Y Acad Sci 1113:217–237

    Article  PubMed  Google Scholar 

  13. Madrigal-Matute J, Martin-Ventura JL, Blanco-Colio LM, Egido J, Michel JB et al (2011) Heat-shock proteins in cardiovascular disease. Adv Clin Chem 54:1–43

    Article  CAS  PubMed  Google Scholar 

  14. Xu Q, Metzler B, Jahangiri M, Mandal K (2012) Molecular chaperones and heat shock proteins in atherosclerosis. Am J Physiol 302(3):H506–H514

    CAS  Google Scholar 

  15. Shan YX, Liu TJ, Su HF, Samsamshariat A, Mestril R, Wang PH (2003) Hsp10 and Hsp60 modulate Bcl-2 family and mitochondria apoptosis signaling induced by doxorubicin in cardiac muscle cells. J Mol Cell Cardiol 35(9):1135–1143

    Article  CAS  PubMed  Google Scholar 

  16. Park HK, Park EC, Bae SW et al (2006) Expression of heat shock protein 27 in human atherosclerotic plaques and increased plasma level of heat shock protein 27 in patients with acute coronary syndrome. Circ 114(9):886–893

    Article  CAS  Google Scholar 

  17. Bobryshev YV, Lord RSA (2002) Expression of heat shock protein-70 by dendritic cells in the arterial intima and its potential significance in atherogenesis. J Vasc Surg 35(2):368–375

    Article  PubMed  Google Scholar 

  18. Businaro R, Profumo E, Tagliani A et al (2009) Heat-shock protein 90: a novel autoantigen in human carotid atherosclerosis. Atherosclerosis 207(1):74–83

    Article  CAS  PubMed  Google Scholar 

  19. Thomas X, Campos L, Le QH, Guyotat D (2005) Heat shock proteins and acute leukemias. Hematol 10:225–235

    Article  CAS  Google Scholar 

  20. Huang S, Ingber DE (2000) Shape-dependent control of cell growth, differentiation, and apoptosis: switching between attractors in cell regulatory networks. Exp Cell Res 261:91–103

    Article  CAS  PubMed  Google Scholar 

  21. Itoh H, Komatsuda A, Wakui H, Miura AB, Tashima Y (1999) Mammalian HSP60 is a major target for an immunosuppressant mizoribine. J Biol Chem 274:35147–35151

    Article  CAS  PubMed  Google Scholar 

  22. Nadler SG, Tepper MA, Schacter B, Mazzucco CE (1992) Interaction of the immunosuppressant deoxyspergualin with a member of the Hsp70 family of heat shock proteins. Sci 258:484–486

    Article  CAS  Google Scholar 

  23. Wadhwa R, Sugihara T, Yoshida A, Nomura H, Reddel RR et al (2000) Selective toxicity of MKT- 077 to cancer cells is mediated by its binding to the hsp70 family protein mot-2 and reactivation of p53 function. Cancer Res 60:6818–6821

    CAS  PubMed  Google Scholar 

  24. Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm MF et al (2003) A high-affinity conformation of Hsp90 confers tumor selectivity on Hsp90 inhibitors. Nat 425:407–410

    Article  CAS  Google Scholar 

  25. Neckers L, Workman P (2012) Hsp90 molecular chaperone inhibitors: are we there yet? Clin Cancer Res 18:64–76

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Modi S, Stopeck A, Linden H et al (2011) HSP90 inhibition is effective in breast cancer: a phase II trial of tanespimycin (17-AAG) plus trastuzumab in patients with HER2-positive metastatic breast cancer progressing on trastuzumab. Clin Cancer Res 17(15):5132–5139

    Article  CAS  PubMed  Google Scholar 

  27. Rohde M, Daugaard M, Jensen MH, Helin K, Nylandsted J et al (2005) Members of the heat-shock protein 70 family promote cancer cell growth by distinct mechanisms. Genes Dev 19(5):570–582

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Srivastava P (2002) Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu Rev Immunol 20:395–425

    Article  CAS  PubMed  Google Scholar 

  29. Murshid A, Gong J, Stevenson MA, KCalderwood SK (2011) Heat shock proteins and cancer vaccines: developments in the past decade and chaperoning in the decade to come. Expert Rev Vaccines 10:1553–1568

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Noessner E, Gastpar R, Milani V et al (2002) Tumor-derived heat shock protein 70 peptide complexes are cross-presented by human dendritic cells. J Immunol 169(10):5424–5432

    Article  CAS  PubMed  Google Scholar 

  31. Udono H, Srivastava PK (1993) Heat shock protein 70-associated peptides elicit specific cancer immunity. J Exp Med 178(4):1391–1396

    Article  CAS  PubMed  Google Scholar 

  32. Wang XY, Kazim L, Repasky EA, Subjeck JR (2001) Characterization of heat shock protein 110 and glucose-regulated protein 170 as cancer vaccines and the effect of fever-range hyperthermia on vaccine activity. J Immunol 166(1):490–497

    Article  CAS  PubMed  Google Scholar 

  33. Manjili MH, Wang XY, Chen X et al (2003) HSP110-HER2/neu chaperone complex vaccine induces protective immunity against spontaneous mammary tumors in HER-2/neu transgenic mice. J Immunol 171(8):4054–4061

    Article  CAS  PubMed  Google Scholar 

  34. Mazzaferro V, Coppa J, Carrabba MG et al (2003) Vaccination with autologous tumor-derived heat-shock protein Gp96 after liver resection for metastatic colorectal cancer. Clin Cancer Res 9(9):3235–3245

    CAS  PubMed  Google Scholar 

  35. Tytell M, Greenberg SG, Lasek RJ (1986) Heat shock like protein is transferred from glia to exon. Brian Res 363:161–164

    Article  CAS  Google Scholar 

  36. Hightower LE, Guidon PT (1989) Selective release from cultured mammalian cells of heat- shock (stress) proteins that resemble glia-axon transfer proteins. J Cell Physiol 138:257–266

    Article  CAS  PubMed  Google Scholar 

  37. Pockley AG (2002) Heat shock proteins, inflammation, and cardiovascular disease. Circ 105:1012–1017

    Article  CAS  Google Scholar 

  38. Mambula SS, Calderwood SK (2006) Heat shock protein 70 is secreted from tumor cells by a non-classical pathway involving lysosomal endosomes. J Immunol 177(11):7849–7857

    Article  CAS  PubMed  Google Scholar 

  39. Bassan M, Zamostiano R, Giladi E, Davidson A, Wollman Y et al (1998) The Identification of secreted heat shock 60-like protein from rat glial cells and a human neuroblastoma cell line. Neurosci Lett 250:37–40

    Article  CAS  PubMed  Google Scholar 

  40. Zhang B, Walsh MD, Nguyen KB, Hillyard NC, Cavanagh AC et al (2003) Early pregnancy factor treatment suppresses the inflammatory response and adhesion molecule expression in the spinal cord of SJL/J mice with experimental autoimmune encephalomyelitis and the delayed-type hypersensitivity reaction to trinitrochlorobenzene in normal BALB/c mice. J Neurol Sci 212:37–46

    Article  CAS  PubMed  Google Scholar 

  41. Athanasas-Platsis S, Zhang B, Hillyard NC, Cavanagh AC, Csurhes PA et al (2003) Early pregnancy factor suppresses the infiltration of lymphocytes and macrophages in the spinal cord of rats during experimental autoimmune encephalomyelitis but has no effect on apoptosis. J Neurol Sci 214:27–36

    Article  CAS  PubMed  Google Scholar 

  42. Kol A, Sukhova GK, Lichtman AH, Libby P (1998) Chlamydial Heat shock protein 60 localizes in human atheroma and regulates macrophage tumor necrosis factor-a and matrix metalloproteinase expression. Circu 98:300–307

    Article  CAS  Google Scholar 

  43. Kol A, Lichtman AH, Finberg RW, Libby P, Kurt-Jones EA (2000) Heat Shock Protein (HSP) 60 activates the innate immune response:CD14 is an essential receptor for HSP60 activation of mononuclear cells. J Immunol 164:13–17

    Article  CAS  PubMed  Google Scholar 

  44. Chen W, Syldath U, Bellmann K, Burkart V, Kold H (1999) Human 60-kDa heat shock protein: a danger signal to the innate immune system. J Immunol 162:3212–3219

    CAS  PubMed  Google Scholar 

  45. Kol A, Bourcier T, Lichtman AH, Libby P (1999) Chlamydial and Human heat shock protein 60 s activate human vascular endothelium, smooth muscle cells, and macrophages. J Clin Invest 103:571–577

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Cao J, Zhang X, Gong Y, Zhang Y, Cui Y et al (2013) Protection against pneumococcal infection elicited by immunization with multiple pneumococcal heat shock proteins. Vaccine 31(35):3564–3571

    Article  CAS  PubMed  Google Scholar 

  47. Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92:351–366

    Article  CAS  PubMed  Google Scholar 

  48. Orozco C, Perkins T, Clarke FM (1986) Platelet-activating factor induces the expression of early pregnancy factor activity in female mice. J Reprod Fertil 78:549–555

    Article  CAS  PubMed  Google Scholar 

  49. Nancarrow CD, Wallace AL, Grewal AS (1981) The early pregnancy factor of sheep and cattle. J Reprod Fertil Suppl 30:191–199

    CAS  PubMed  Google Scholar 

  50. Morton H, Morton DJ, Ellendorff F (1983) The appearance and characteristics of early pregnancy factor in the pig. J Reprod Fertil 69:437–446

    Article  CAS  PubMed  Google Scholar 

  51. Ohnuma KIK, Miyake Y-I, Tahakashi J, Ya-suda Y (1996) Detection of early pregnancy factor (EPF) in mare sera. J Reprod Dev 42:26–28

    Article  Google Scholar 

  52. Ghaffari Laleh V, Ghaffari Laleh R, Pirany N, Moghadaszadeh Ahrabi M (2008) Measurement of EPF for detection of cow pregnancy using rosette inhibition test. Theriogenology 70:105–107

    Article  CAS  PubMed  Google Scholar 

  53. Qin ZH, Zheng ZQ (1987) Detection of early pregnancy factor in human sera. Am J Reprod Immunol Microbiol 13:15–18

    CAS  PubMed  Google Scholar 

  54. Zheng ZQ, Qin ZH, Ma AY, Qiao CX, Wang H (1990) Detection of early pregnancy factor-like activity in human amniotic fluid. Am J Reprod Immunol 22:9–11

    Article  CAS  PubMed  Google Scholar 

  55. Wang HN, Zheng ZQ (1990) Detection of early pregnancy factor in fetal sera. Am J Reprod Immunol 23:69–72

    Article  CAS  PubMed  Google Scholar 

  56. Vasudha BC, Aparna HS, Manjunatha HB (2006) Impact of heat shock on heat shock proteins expression, biological and commercial traits of Bombyx mori. Insect Sci 13:243–250

    Article  Google Scholar 

  57. Ray N, Roy S, Singha S, Chandra B, Dasgupta AK, Sarkar A (2014) Design of heat shock-resistant surfaces to prevent protein aggregation: Enhanced chaperone activity of immobilized α-Crystallin. Bioconjug Chem 25(5):888–895

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh R. Kundapur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Kundapur, R.R., Kumar, D. (2015). Biomedical Applications of Heat Shock Proteins. In: Kumar, D., R. Kundapur, R. (eds) Biomedical Applications of Natural Proteins. SpringerBriefs in Biochemistry and Molecular Biology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2491-4_2

Download citation

Publish with us

Policies and ethics