Skip to main content

Phytoremediation: General Account and Its Application

  • Chapter
Plant Biology and Biotechnology

Abstract

Developmental activities have resulted in contamination of the environment and thus disturbed the ecosystem. One of the main agenda for scientific community has been remediation of contaminated sites which has been expensive and intrusive to the ecosystem. Phytoremediation is a set of different processes/techniques which uses plants for containment, destruction, or extraction of contaminants. Various processes involved in phytoremediation are phytodegradation, phytoextraction, rhizofiltration, phytostabilization, phytovolatilization, and hydraulic control. This chapter highlights various processes involved in phytoremediation along with the essential components of phytoremediation. Emphasis is also given on recent advancements in phytoremediation in which microbe-assisted phytoremediation and use of transgenic plants have been discussed. This technology has been receiving attention because of its cost-effectiveness and environment-friendly approach. Therefore, phytoremediation may open a new avenue for a broader and more efficient and sustainable solution for the remediation of contaminated sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhilash PC, Jamil S, Singh N (2009a) Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnol Adv 27:474–488

    Article  CAS  PubMed  Google Scholar 

  • Abhilash PC, Pandey VC, Srivastava P, Rakesh PS, Chandran S, Singh N, Thomas AP (2009b) Phytofiltration of cadmium from water by Limnocharis flava L. grown in free-floating culture system. J Hazard Mater 170(2–3):791–797

    Article  CAS  PubMed  Google Scholar 

  • Abhilash PC, Singh HB, Powell JR, Singh BK (2012) Plant–microbe interactions: novel applications for exploitation in multipurpose remediation technologies. Trend Biotechnol 30:416–420

    Article  CAS  Google Scholar 

  • Aken BV (2008) Transgenic plants for phytoremediation: helping nature to clean up environmental pollution. Trend Biotechnol 26:225–237

    Article  Google Scholar 

  • Alvarenga P, Gonçalves AP, Fernandes RM, de Varennes A et al (2009) Organic residues as immobilizing agents in aided phytostabilization: (I) effects on soil chemical characteristics. Chemosphere 74(10):1292–1300

    Article  CAS  PubMed  Google Scholar 

  • Chaney RL, Li YM, Angle JS et al (2000) In: Terry N, Banelos G (eds) Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton, pp 129–158

    Google Scholar 

  • Chen J, Shiyab S, Han FX, Monts DL, Waggoner CA (2009) Bioaccumulation and physiological effects of mercury in Pteris vittata and Nephrolepis exaltata. Ecotoxicology 18:110–121

    Article  CAS  PubMed  Google Scholar 

  • Choudhary SP, Bhardwaj R, Gupta BD, Dutt P, Kanwar M, Arora M (2009) Epibrassinolide regulated synthesis of polyamines and auxins in Raphanus sativus L. seedlings under Cu metal stress. Braz J Plant Physiol 21:25–32

    Article  Google Scholar 

  • Crowley DE, Kraemer SM (2007) Function of siderophores in the plant rhizosphere. The rhizosphere: biochemistry and organic substances at the soil–plant interface, 2nd edn. CRC, Boca Raton, pp 173–200

    Book  Google Scholar 

  • Doty SL (2008) Enhancing phytoremediation through the use of transgenic plants and endophytes. New Phytol 179:318–333

    Article  CAS  PubMed  Google Scholar 

  • Fu D, Teng Y, Luo Y, Tu C, Li S (2012) Effects of alfalfa and organic fertilizer on benzopyrene dissipation in an aged contaminated soil. Environ Sci Pollut Res 19:1605–1611

    Article  CAS  Google Scholar 

  • Gaskin SE (2008) Rhizoremediation of hydrocarbon contaminated soil using Australian native grasses, PhD thesis, School of Medicine Faculty of Health Sciences, Flinders University of South Australia, Adelaide

    Google Scholar 

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of its byproducts. Appl Ecol Environ Res 3(1):1–18

    Article  Google Scholar 

  • Henry JR (2000) An overview of phytoremediation of lead and mercury. NNEMS Rep, Washington DC, pp 3–9

    Google Scholar 

  • Imfeld G, Braeckevelt M, Kuschk P, Richnow HH (2009) Monitoring and assessing processes of organic chemicals removal in constructed wetlands. Chemosphere 74:349–362

    Article  CAS  PubMed  Google Scholar 

  • Juwarkar AA (2012) Microbe-assisted phytoremediation for restoration of biodiversity of degraded lands: a sustainable solution. Proc Natl Acad Sci India Sect B Biol Sci 82(S2):313–318

    CAS  Google Scholar 

  • Juwarkar AA, Singh SK (2007) Utilisation of municipal solid waste as an amendment for reclamation of coal mine spoil dump. Intl J Environ Technol Manag 7(3/4):407–420

    Article  CAS  Google Scholar 

  • Juwarkar AA, Singh SK (2010) Microbe-assisted phytoremediation approach for ecological restoration of zinc mine spoil dump. Int J Environ Poll 43(1/2/3):236–250

    Article  CAS  Google Scholar 

  • Juwarkar AA, Singh SK, Mudhoo A (2010) A comprehensive overview of elements in bioremediation. Rev Environ Sci Biotechnol 9:215–288

    Article  CAS  Google Scholar 

  • Juwarkar AA, Misra RR, Sharma JK (2014) Recent trends in bioremediation. In: Parmar N, Singh A (eds) Geomicrobiology and biogeochemistry. Springer, Berlin, pp 81–100

    Chapter  Google Scholar 

  • Kumar GP, Yadav SK, Thawale PR, Singh SK, Juwarkar AA (2008) Growth of Jatropha curcas on heavy metal contaminated soil amended with industrial wastes and Azotobacter – a greenhouse study. Biores Technol 99:2078–2082

    Article  CAS  Google Scholar 

  • López-Moreno ML, de la Rosa G et al (2010a) X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J Agric Food Chem 58(6):3689–3693

    Article  PubMed Central  PubMed  Google Scholar 

  • López-Moreno ML, de la Rosa G et al (2010b) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44(19):7315–7320

    Article  PubMed Central  PubMed  Google Scholar 

  • McCutcheon SC, Schnoor JL (2003) Phytoremediation transformation and control of contaminants. Wiley-Interscience, New Jersey

    Google Scholar 

  • Meggo RE, Schnoor JL, Hu D (2013) Dechlorination of PCBs in the rhizosphere of switchgrass and poplar. Environ Poll 178:312–321

    Article  CAS  Google Scholar 

  • Mojiri A (2011) The potential of corn (zea mays) for phytoremediation of soil contaminated with cadmium and lead. J Biol Environ Sci 5:17–22

    Google Scholar 

  • Nanekar S, Dhote M, Kashyap S, Singh SK, Juwarkar AA (2013) Microbe assisted phytoremediation of oil sludge and role of amendments: a mesocosm study. Int J Environ Sci Technol. doi:10.1007/s13762-013-0400-3

    Google Scholar 

  • Peng X, Yang B, Deng D, Dong J, Chen Z (2012) Lead tolerance and accumulation in three cultivars of Eucalyptus urophylla X E. grandis: implication for phytoremediation. Environ Earth Sci 67(5):1515–1520

    Article  CAS  Google Scholar 

  • Pivetz BE (2001) Phytoremediation of contaminated soil and ground water at hazardous waste sites. EPA/540/S-01/500

    Google Scholar 

  • Prasad MNV, Freitas H (2003) Metal hyperaccumulation in plants- biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6(3):285–321

    Article  Google Scholar 

  • Rani R, Juwarkar A (2012) Biodegradation of phorate in soil and rhizosphere of Brassica juncea (L.) (Indian mustard) by a microbial consortium. Int Biodeter Biodegrad 71:36–42

    Article  CAS  Google Scholar 

  • Rani R, Padole P, Juwarkar A, Chakrabarti T (2012) Phytotransformation of phorate by Brassica juncea (Indian mustard). Water Air Soil Poll 223:1383–1392

    Article  CAS  Google Scholar 

  • Robinson B, Kimb N, Marchetti M, Monid C, Schroeter L, Dijssel C, Milne G, Clothier B (2006) Arsenic hyperaccumulation by aquatic macrophytes in the Taupo Volcanic Zone, New Zealand. Environ Exp Bot 58:206–215

    Article  CAS  Google Scholar 

  • Salt DE, Blaylock M, Nanda Kumar PBA, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474

    Article  CAS  PubMed  Google Scholar 

  • Sharma JK, Gautam RK, Misra RR, Kashyap SM, Singh SK, Juwarkar AA (2014) Degradation of di-through hepta-chlorobiphenyls in clophen oil using microorganisms isolated from long term PCBs contaminated soil. Indian J Microbiol. doi:10.1007/s12088-014-0459-7

    Google Scholar 

  • Sun TR, Long C, Wang QY, Cheng JM, Xua H (2010) Roles of abiotic losses, microbes, plant roots, and root exudates on phytoremediation of PAHs in a barren soil. J Hazard Mater 176:919–925

    Article  CAS  PubMed  Google Scholar 

  • Sun M, Fu D et al (2011a) In situ phytoremediation of PAH-contaminated soil by intercropping alfalfa (Medicago sativa L.) with tall fescue (Festuca arundinacea Schreb) and associated soil microbial activity. J Soils Sediments 11:980–989

    Article  CAS  Google Scholar 

  • Sun Y, Zhou Q, Xu Y, Wang L, Liang X (2011b) Phytoremediation for co-contaminated soils of benzo [a] pyrene (B[a]P) and heavy metals using ornamental plant Tagetes patula. J Hazard Mater 186:2075–2082

    Google Scholar 

  • Tanimoto E (2005) Regulation of root growth by plant hormones–roles for auxin and gibberellins. Crit Rev Plant Sci 24:249–265

    Article  CAS  Google Scholar 

  • Vangronsveld J, Herzig R et al (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16(7):765–794

    Article  CAS  Google Scholar 

  • Vishnoi SR, Srivastava PN (2008) Phytoremediation–green for environmental clean. In: Proceedings of Taal2007: The 12th World Lake Conference, pp 1016–1021

    Google Scholar 

  • Wang J, Zhao F-J, Meharg AA, Raab A, Feldmann J, McGrath SP (2002) Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate and arsenic speciation. Plant Physiol 130(3):1552–1561

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wenzel WW (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321:385–408

    Article  CAS  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Newman L, Vangronsveld J (2009) Exploiting plant–microbe partnerships to improve biomass production and remediation. Trend Biotechnol 27(10):591–598

    Article  CAS  Google Scholar 

  • Wu L, Li Z et al (2012) Phytoremediation of soil contaminated with cadmium, copper and polychlorinated biphenyls. Int J Phytoremed 14(6):570–584

    Article  CAS  Google Scholar 

  • Zhang H, Dang Z, Zheng LC, Yi XY (2009) Remediation of soil co-contaminated with pyrene and cadmium by growing maize (Zea mays L.). Int J Environ Sci Tech 6:249–258

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asha A. Juwarkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Sharma, J.K., Juwarkar, A.A. (2015). Phytoremediation: General Account and Its Application. In: Bahadur, B., Venkat Rajam, M., Sahijram, L., Krishnamurthy, K. (eds) Plant Biology and Biotechnology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2283-5_34

Download citation

Publish with us

Policies and ethics