Prediction of Blood Brain Barrier Permeability of Ligands Using Sequential Floating Forward Selection and Support Vector Machine

  • Pooja Gupta
  • Utkarsh Raj
  • Pritish K. Varadwaj
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 31)


Prediction of Blood Brain Barrier (BBB) permeability index has been established as an important criterion for CNS active drug molecules. Various experimental and in silico approaches were being used for the prediction BBB permeability with accuracy level fall within 80 % on test dataset (r2 = squared correlation coefficient; 0.65–0.91 derived from training set). In this study Sequential Floating Forward Selection (SFFS) feature selection method based Support Vector Machine (SVM) classification was carried out on a set of 453 chemically diverse compounds with known BBB permeability index. The prediction efficiency for the test set was found to be r2 = 0.95 for 369 compounds (within the applicability domain after excluding four activity outliers). Classification accuracies for permeable (BBB +ve) and non-permeable (BBB −ve) were 96.84 and 98.21 % respectively.


Blood brain barrier In silico Support vector machine 


  1. 1.
    Hawkins, B.T., Davis, P.: The blood-brain barrier/neurovascular unit in health and disease’. Pharmacol. Rev. 57, 173–185 (2005)CrossRefGoogle Scholar
  2. 2.
    Cuzner, M.L., Hayes, G.M., Newcombe, J., Woodroofe, M.N.: The nature of inflammatory components during demyelination in multiple sclerosis. J. Neuroimmunol. 20, 203–209 (1988)CrossRefGoogle Scholar
  3. 3.
    Esiri, M.M.: Immunoglobulin-containing cells in multiple-sclerosis plaques. Lancet 2, 478–480 (1977)CrossRefGoogle Scholar
  4. 4.
    Pardridge, W.M.: Isolated brain capillaries: an in vitro model of blood-brain barrier research. In: Pardridge, W.M. (ed.) Introduction to the Blood-Brain Barrier Methodology, Biology and Pathology. Cambridge University Press, Cambridge (1998)CrossRefGoogle Scholar
  5. 5.
    Pardridge, W.M.: Blood-brain barrier biology and methodology. J. Neurovirol. 5, 556–569 (1999)CrossRefGoogle Scholar
  6. 6.
    Lasbennes, F., Sercombe, R., Seylaz, J.: Monoamine oxidase activity in brain microvessels determined using natural and artificial substrates: relevance to the blood-brain barrier. J. Cereb. Blood Flow Metab. 3, 521–528 (1983)CrossRefGoogle Scholar
  7. 7.
    Takakura, Y., Audus, K.L., Borchardt, T.: Blood-brain barrier: transport studies in isolated brain capillaries and in cultured brain endothelial cells. Adv. Pharmacol. 22, 137–165 (1991)CrossRefGoogle Scholar
  8. 8.
    Mater, S., Maickel, R.P., Brodie, B.B.: Kinetics of penetration of drugs and other foreign compounds into cerebrospinal fluid and brain. J. Pharmacol. Exp. Ther. 127, 205–211 (1959)Google Scholar
  9. 9.
    Bickel, U.: How to measure drug transport across the blood-brain barrier. NeuroRx 2, 15–26 (2005)CrossRefGoogle Scholar
  10. 10.
    Oldendorf, W.H., Pardridge, W.M., Braun, L.D., Crane, P.D.: Measurement of cerebral glucose utilization using washout after carotid injection in the rat. J. Neurochem. 38, 1413–1418 (1982)CrossRefGoogle Scholar
  11. 11.
    Oldendorf, W.H.: Measurement of brain uptake of radiolabeled substances using a tritiated water internal standard. Brain Res. 24, 372–376 (1970)CrossRefGoogle Scholar
  12. 12.
    Takasato, Y., Rapoport, S.I., Smith, R.: An in situ brain perfusion technique to study cerebrovascular transport in the rat. Am. J. Cell Physiol. 247, 484–493 (1984)Google Scholar
  13. 13.
    Aasmundstad, T.A., Morland, J., Paulsen, R.E.: Distribution of morphine 6-glucuronide and morphine across the blood-brain barrier in awake, freely moving rats investigated by in vivo microdialysis sampling. J. Pharmacol. Exp. Ther. 275, 435–441 (1995)Google Scholar
  14. 14.
    Westergren, I., Nystrom, B., Hamberger, A., Johansson, B.B.: Intracerebral dialysis and the blood-brain barrier. J. Neurochem. 64, 229–234 (1995)CrossRefGoogle Scholar
  15. 15.
    Webb, S., Ott, R.J., Cherry, S.R., Quantization of blood-brain barrier permeability by positron emission tomography. Phys Med. Biol. 34, 1767–171Google Scholar
  16. 16.
    Goodwin, J.T., Clark, E.: In silico predictions of blood-brain barrier penetration: considerations to “keep in mind”. J. Pharmacol. Exp. Ther. 315, 477–483 (2005)CrossRefGoogle Scholar
  17. 17.
    Clark, D.E.: In-silico prediction of blood-brain barrier permeation. Drug Discov. Today 8, 927–933 (2003)CrossRefGoogle Scholar
  18. 18.
    Abraham, M.H., Chadha, H.S., Mitchell, R.C.: Hydrogen bonding. 33. Factors that influence the distribution of solutes between blood and brain. J. Pharm. Sci. 83, 1257–1268 (1994)CrossRefGoogle Scholar
  19. 19.
    Abraham, M.H., Chadha, H.C., Mitchell, R.C.: Hydrogen-bonding. Part 36. Determination of blood brain distribution using octanol-water partition coefficients. Drug Des. Discov. 13, 123–131 (1995)Google Scholar
  20. 20.
    Lombardo, F., Blake, J.F., Curatolo, W.J.: Computation of brain–blood partitioning of organic solutes via free energy calculations. J. Med. Chem. 39, 4750–4755 (2003)CrossRefGoogle Scholar
  21. 21.
    Subramanian, G., Kitchen, D.B.: Computational models to predict blood–brain barrier permeation and CNS activity. J. Comput. Aided Mol. Des. 17, 643–664 (2003)CrossRefGoogle Scholar
  22. 22.
    Katritzky, A.R., Kuanar, M., Slavov, S., Dobchev, D.A., Fara, D.C., Karelson, M., Acree, W.E., Solov’ev, V.P., Varnek, A.: Correlation of blood–brain penetration using structural descriptors. Bioorg. Med. Chem. 14, 4888–4917 (2006)CrossRefGoogle Scholar
  23. 23.
    Hou, T.J., Xu, X.J.: ADME evaluation in drug discovery. 3. Modeling blood–brain barrier partitioning using simple molecular descriptors. J. Chem. Inf. Comput. Sci. 43, 2137–2152 (2003)CrossRefGoogle Scholar
  24. 24.
    Iyer, M., Mishru, R., Han, Y., Hopfinger, A.J.: Predicting blood–brain barrier partitioning of organic molecules using membrane-interaction QSAR analysis. Pharm. Res. 19, 1611–1621 (2002)CrossRefGoogle Scholar
  25. 25.
    Pan, D., Iyer, M., Liu, J., Li, Y., Hopfinger, A.J.: Constructing optimum blood brain barrier QSAR models using a combination of 4D-molecular similarity measures and cluster analysis. J. Chem. Inf. Comput. Sci. 44, 2083–2098 (2004)CrossRefGoogle Scholar
  26. 26.
    Ma, X.L., Chen, C., Yang, J.: Predictive model of blood–brain barrier penetration of organic compounds. Acta Pharmacol. Sin. 26, 500–512 (2005)CrossRefGoogle Scholar
  27. 27.
    Norinder, U., Haeberlein, H.: Computational approaches to the prediction of the blood–brain distribution. Adv. Drug Deliv. Rev. 54, 291–313 (2002)CrossRefGoogle Scholar
  28. 28.
    Platts, J.A., Abraham, M.H., Zhao, Y.H., Hersey, A., Ijaz, L., Butina, D.: Correlation and prediction of a large blood-brain distribution data set—an LFER study. Eur. J. Med. Chem. 36, 719–730 (2001)CrossRefGoogle Scholar
  29. 29.
    Hemmateenejad, B., Miri, R., Safarpour, M.A., Mehdipour, A.R.: Accurate prediction of the blood–brain partitioning of a large set of solutes using ab initio calculations and genetic neural network modeling. J. Comput. Chem. 27, 1125–1135 (2006)CrossRefGoogle Scholar
  30. 30.
    Zhang, L., Zhu, H., Oprea, T.I., Golbraikh, A., Tropsha, A.: QSAR modeling of the blood-brain barrier permeability for diverse organic compounds. Pharm. Res. 25, 1902–1914 (2008)CrossRefGoogle Scholar
  31. 31.
    Kortagere, S., Chekmarev, D., Welsh, W.J., Ekins, S.: New predictive models for blood-brain barrier permeability of drug-like molecules. Pharm. Res. 25, 1836–1845 (2008)CrossRefGoogle Scholar
  32. 32.
    Dureja, H., Madan, A.K.: Validation of topochemical models for the prediction of permeability through the blood-brain barrier. Acta Pharm. 57, 451–467 (2007)CrossRefGoogle Scholar
  33. 33.
    Doniger, S., Hofmann, T., Yeh, J.: Predicting CNS permeability of drug molecules: comparison of neural network and support vector machine algorithms. J. Comput. Biol. 9, 849–864 (2002)CrossRefGoogle Scholar
  34. 34.
    Guangli, M., Yiyu, C.: Predicting Caco-2 permeability using support vector machine and chemistry development kit. J. Pharm. Pharm. Sci. 9, 210–221 (2006)Google Scholar
  35. 35.
    Yanga, S.Y., Huanga, Q., Lib, L.L., Maa, C.Y., Zhanga, H., Baia, R., Tenga, Q.Z., Xianga, M.L., Weia, Y.Q.: An integrated scheme for feature selection and parameter setting in the support vector machine modeling and its application to the prediction of pharmacokinetic properties of drugs. Artif. Intell. Med. 46, 155–163 (2009)CrossRefGoogle Scholar
  36. 36.
    Clark, D.E.: Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 2. Prediction of blood-brain barrier penetration. J. Pharm. Sci. 88, 815–821 (1999)CrossRefGoogle Scholar
  37. 37.
    Feher, M., Sourial, E., Schmidt, J.M.: A simple model for the prediction of blood–brain partitioning. Int. J. Pharm. 201, 239–247 (2000)CrossRefGoogle Scholar
  38. 38.
    Brewster, M.E., Pop, E., Huang, M.J., Bodor, N.: AM1-based model system for estimation of brain/blood concentration ratios. Int. J. Quantum Chem. 60, 51–63 (1996)CrossRefGoogle Scholar
  39. 39.
    Burns, J., Weaver, D.F.: A mathematical model for prediction of drug molecule diffusion across the blood-brain barrier. Can. J. Neurol. Sci. 31, 520–527 (2004)Google Scholar
  40. 40.
    Li, H., Yap, C.W., Ung, C.Y., Xue, Y., Cao, Z.W., Chen, Y.Z.: Effect of selection of molecular descriptors on the prediction of blood-brain barrier penetrating and non-penetrating agents by statistical learning methods. J. Chem. Inf. Model. 45, 1376–1384 (2005)CrossRefGoogle Scholar
  41. 41.
    Zhou, X., Mao, K.Z.: LS bound based gene selection for DNA microarray data. Bioinformatics 21, 1559–1564 (2005). Oxford university pressCrossRefGoogle Scholar
  42. 42.
    Stein, W.D.: The Movement of Molecules across Cell Membranes, p. 120. Academic Press, New York (1967)Google Scholar
  43. 43.
    Zhang, L.Z., Lu, M., Tian, F.: Maximum Randi´c index on trees with k-pendant vertices. J. Math. Chem. 41, 161–171 (2007)CrossRefMathSciNetMATHGoogle Scholar
  44. 44.
    Wiener, H.: Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69, 17–20 (1947)CrossRefGoogle Scholar
  45. 45.
    Balaban, A.T.: Distance connectivity index. Chem. Phys. Lett. 89, 399–404 (1982)CrossRefMathSciNetGoogle Scholar
  46. 46.
    Gutman, I., Ruscic, B., Trinajstic, N.S., Wilcox, C.F.: Graph theory and molecular orbitals XII acyclic polyenes. J. Chem. Phys. 62, 3399–3405 (1975)CrossRefGoogle Scholar
  47. 47.
    Wiener, H.: Correlation of heats of isomerization and differences in heats of vaporization of isomers among the paraffinic hydrocarbons. J. Am. Chem. Soc. 69, 2636–2638 (1947)CrossRefGoogle Scholar
  48. 48.
    Platt, J.R.: Prediction of isomeric differences in paraffin properties. J. Phys. Chem. 56, 328–336 (1952)CrossRefGoogle Scholar
  49. 49.
    Garg, P., Verma, J., Roy, N.: In Silico modeling for blood-brain barrier permeability predictions. Drug Absorption Stud. 8, 289–297 (2008)Google Scholar
  50. 50.
    Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)MATHGoogle Scholar
  51. 51.
    Varadwaj, V., Purohit, N., Arora, B.: Detection of splice sites using support vector machine. Contemp. Comput. 40, 493–502 (2009)CrossRefGoogle Scholar
  52. 52.
    Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. Software available at (2001)

Copyright information

© Springer India 2015

Authors and Affiliations

  • Pooja Gupta
    • 1
  • Utkarsh Raj
    • 1
  • Pritish K. Varadwaj
    • 1
  1. 1.Indian Institute of Information TechnologyAllahabadIndia

Personalised recommendations