Skip to main content

Abiotic and Biotic Plant Stress-Tolerant and Beneficial Secondary Metabolites Produced by Endophytic Bacillus Species

  • Chapter
  • First Online:
Plant Microbes Symbiosis: Applied Facets

Abstract

Knowledge of endophytic bacteria and their potential for protecting crops has targeted the endophytic species of Bacillus as a valued microorganism not only for disease protection but also for inducing plant defense mechanisms. Bacillus species and their endophytic strains are also used for a wide range of antibiotics that inhibit pathogens directly impacting cellular structures or at the molecular and physiological levels. The endophytic species and strains produce fungal inhibitory compounds that belong to three broad families of lipopeptides, and these include the bacillomycins, fengycins, and surfactins. Bacilli also produce the ribosomally synthesized antimicrobial peptides, bacteriocins, which have been implemented in plant protection schemes to control fungal and bacterial diseases. Others have yet to be identified. These compounds form the basis of intense activity ranging from acute toxicity to serving as signal transduction systems for specific cellular functions, organelle formation, and responses to environmental changes and challenges. This review addresses some evidence of endophytic bacillus impacts on alleviating plant stresses, both abiotic and biotic with suggestions on future studies necessary for specific mechanisms that may assist in increasing their performance as biocontrol agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abriouel H, Franz CMAP, Omar NB, Gálvez A (2011) Diversity and applications of Bacillus bacteriocins. FEMS Microbiol Rev 35(1):201–232

    Article  PubMed  CAS  Google Scholar 

  • Araújo FF, Henning AA, Hungria M (2005) Phytohormones and antibiotics produced by Bacillus subtilis and their effects on seed pathogenic fungi and on soybean root development. World J Microbiol Biotechnol 21(8–9):1639–1645

    Article  Google Scholar 

  • Ashwini N, Srividya S (2013) Potentiality of Bacillus subtilis as biocontrol agent for management of anthracnose disease of chilli caused by Colletotrichum gloeosporioides OGC1. Biotech 3:1–10

    Google Scholar 

  • Bacon CW, Hinton DM (2002) Endophytic and biological control potential of Bacillus mojavensis and related species. Biol Control 23:274–284

    Article  CAS  Google Scholar 

  • Bacon CW, Hinton DM (2011a) In planta reduction of maize seedling stalk lesions by the bacterial endophyte Bacillus mojavensis. Can J Microbiol 57:485–492

    Article  PubMed  CAS  Google Scholar 

  • Bacon CW, Hinton DM (2011b) Bacillus mojavensis: its endophytic nature, the surfactins, and their role in the plant response to infection by Fusarium verticillioides. In: Maheshwari DK (ed) Bacteria in agrobiology: plant growth responses. Springer, Berlin, pp 21–39

    Google Scholar 

  • Bacon CW, Hinton DM (2014) Microbial endophytes: future challenges. In: Gange AC, Verma VC (eds) Advances in endophytic research. Springer, New York, pp 441–451

    Chapter  Google Scholar 

  • Bacon CW, Porter JK, Norred WP, Leslie JF (1996) Production of fusaric acid by Fusarium species. Appl Environ Microbiol 62:4039–4043

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bacon CW, Yates IE, Hinton DM, Meredith F (2001) Biological control of Fusarium moniliforme in maize. Environ Heal Persp 109:325–332

    Article  CAS  Google Scholar 

  • Bacon CW, Hinton DM, Porter JK, Glenn AE, Kuldau GA (2004) Fusaric acid, a Fusarium verticillioides metabolite, antagonistic to the endophytic biocontrol bacterium Bacillus mojavensis. Can J Bot 82:878–885

    Article  CAS  Google Scholar 

  • Bacon CW, Hinton DM, Glenn AE, Macias FA, Marin D (2007) Interaction of Bacillus mojavensis and Fusarium verticillioides with a benzoxazolinone (BOA) and its transformation products, APO. J Chem Ecol 33:1885–1897

    Article  PubMed  CAS  Google Scholar 

  • Bacon CW, Hinton DM, Mitchell TR, Snook ME, Olubajo BA (2013) Characterization of endophytic strains of Bacillus mojavensis and their production of surfactin isomers. Biol Control 62:1–9

    Article  Google Scholar 

  • Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134:307–319

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Balhara M, Ruhil S, Dhankhar S, Chhillar AK (2011) Bioactive compounds hold up- Bacillus amyloliquefaciens as a potent bio-control agent. Nat Prod J 1:8

    Google Scholar 

  • Benitez L, Velho R, Lisboa M, Costa Medina L, Brandelli A (2010) Isolation and characterization of antifungal peptides produced by Bacillus amyloliquefaciens LBM5006. J Microbiol 48(6):791–797

    Article  PubMed  CAS  Google Scholar 

  • Cameotra S, Makkar R (1998) Synthesis of biosurfactants in extreme conditions. Appl Microbiol Biotechnol 50:520–529

    Article  PubMed  CAS  Google Scholar 

  • Cano RJ, Borucki MK (1995) Revival and identification of bacterial spores in 25- to 40-million-year-old Dominican amber. Science 268:160–1064

    Article  Google Scholar 

  • De Bary A (1866) Mophololgie und physiologie pilze, flechten, und myxomyceten. Hofmeister’s Handbook of Physiol Bot Leipzig 2:1

    Google Scholar 

  • de Silva DM, Askwith CC, Kaplan J (1996) Molecular mechanisms of iron uptake in eukaryotes. Physiol Rev 76(1):31–47

    PubMed  Google Scholar 

  • Dercks W, Creasy LL (1989) The significance of stilbene phytoalexins in the Plasmopara viticola-grapevine interaction. Physiol Mol Plant Pathol 34(3):189–202

    Article  CAS  Google Scholar 

  • Emmert EA, Handelsman J (1999) Biocontrol of plant disease: a (gram-) positive perspective. FEMS Microbiol Lett 171(1):1–9

    Article  PubMed  CAS  Google Scholar 

  • Folmsbee MJ, McInerney MJ, Nagle DP (2004) Anaerobic growth of Bacillus mojavensis and Bacillus subtilis requires deoxyribonucleosides or DNA. Appl Environ Microbiol 70:5252–5257

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fuqua C, Greenberg EP (2002) Listening in on bacteria: acyl-homoserine lactone signalling. Nat Rev 3:685–695

    Article  CAS  Google Scholar 

  • Galippe MLV (1887) Note sur la presence de micro-organismes dan les tissus vegetaux and filiales et associees. Comptes Rendus Hebdomodaires des Seances et Memoires de la Societe de Biologie et des ses Filales et Associees 39:410–416

    Google Scholar 

  • Glenn AE, Hinton DM, Yates IE, Bacon CW (2001) Detoxification of corn antimicrobial compounds as the basis for isolating Fusarium verticillioides and some other Fusarium species from corn. Appl Environ Microbiol 67:2973–2981

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Glenn AE, Gold SE, Bacon CW (2002) Fdb1 and Fdb2, Fusarium verticillioides loci necessary for detoxification of preformed antimicrobials from corn. Mol Plant Microbe Interact 15:91–101

    Article  PubMed  CAS  Google Scholar 

  • Glenn AE, Meredith FI, Morrison WHI, Bacon CW (2003) Identification of intermediate and branch metabolites resulting from biotransformation of 2-benzoxazolinone by Fusarium verticillioides. Appl Environ Microbiol 69:3165–3169

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gomaa E (2012) Chitinase production by Bacillus thuringiensis and Bacillus licheniformis: their potential in antifungal biocontrol. J Microbiol 50(1):103–111

    Article  PubMed  CAS  Google Scholar 

  • Gray EJ, Lee KD, Souleimanov AM, Di Falco MR, Zhou X, Ly A, Charles TC, Driscoll BT, Smith DL (2006) A novel bacteriocin, thuricin 17, produced by plant growth promoting rhizobacteria strain Bacillus thuringiensis NEB17: isolation and classification. J Appl Microbiol 100(3):545–554

    Article  PubMed  CAS  Google Scholar 

  • Hammami I, Rhouma A, Jaouadi B, Rebai A, Nesme X (2009) Optimization and biochemical characterization of a bacteriocin from a newly isolated Bacillus subtilis strain 14B for biocontrol of Agrobacterium spp. strains. Lett Appl Microbiol 48(2):253–260

    Article  PubMed  CAS  Google Scholar 

  • Hammami I, Jaouadi B, Bacha A, Rebai A, Bejar S, Nesme X, Rhouma A (2012) Bacillus subtilis bacteriocin Bac 14B with a broad inhibitory spectrum: purification, amino acid sequence analysis, and physicochemical characterization. Biotechnol Bioproc E 17(1):41–49

    Article  CAS  Google Scholar 

  • Hammerschmidt R, Dann EK (1999) The role of phytoalexins in plant protection. Novartis Found Sympos 223:188–190

    Google Scholar 

  • Hardoim PR, Overbeek V, Leo S, Elsas DJV (2008) Trend Microbiol 16:463–471

    Article  CAS  Google Scholar 

  • He L, Chen W, Liu Y (2006) Production and partial characterization of bacteriocin-like peptides by Bacillus licheniformis ZJU12. Microbiol Res 161(4):321–326

    Article  PubMed  CAS  Google Scholar 

  • Hu HQ, Li XS, He H (2010) Characterization of an antimicrobial material from a newly isolated Bacillus amyloliquefaciens from mangrove for biocontrol of Capsicum bacterial wilt. Biol Control 54(3):359–365

    Article  Google Scholar 

  • Huang CJ, Wang TK, Chung SC, Chen CY (2005) Identification of an antifungal chitinase from a potential biocontrol agent, Bacillus cereus 28-9. J Biochem Mol Biol 38(1):82–88

    Article  PubMed  CAS  Google Scholar 

  • Idriss EE, Makarewicz O, Farouk A, Rosner K, Greiner R, Bochow H, Richter T, Borriss R (2002) Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology 148(7):2097–2109

    PubMed  CAS  Google Scholar 

  • Jack RW, Tagg JR, Ray B (1995) Bacteriocins of gram-positive bacteria. Microbiol Rev 59(2):171–200

    PubMed  CAS  PubMed Central  Google Scholar 

  • Joshi C, Bharucha JHA, Yadav S, Nerukar A, Desai AJ (2008) Biosurfactant production using molasses and whey under thermophilic conditions. Bioresh Technol 99:195–199

    Article  CAS  Google Scholar 

  • Kearns DB, Chu F, Rudner R, Losick R (2005) A master regulator for biofilm formation by Bacillus subtilis. Mol Microbiol 55:739–749

    Article  PubMed  CAS  Google Scholar 

  • Kennedy MJ, Reader SL, Swierczynski LM (1994) Preservation records of micro-organisms: evidence of the tenacity of life. Microbiology 140:2513–2529

    Article  PubMed  Google Scholar 

  • Kim PI, Chung KC (2004) Production of an antifungal protein for control of Colletotrichum lagenarium by Bacillus amyloliquefaciens MET0908. FEMS Microbiol Lett 234(1):177–183

    Article  PubMed  CAS  Google Scholar 

  • Kleerebezem M, Quadri LE, Kuiper P, de Vos WM (1997) Quorum sensing by peptide pheromones and two component signal-transduction systems in Gram-positive bacteria. Mol Microbiol 24:895–904

    Article  PubMed  CAS  Google Scholar 

  • Kumar SN, Nambisan B (2014) Antifungal activity of diketopiperazines and stilbenes against plant pathogenic fungi in vitro. Appl Biochem Biotechnol 172(2):741–754

    Article  PubMed  CAS  Google Scholar 

  • Kumar SN, Siji JV, Nambisan B, Mohandas C (2012a) Activity and synergistic interactions of stilbenes and antibiotic combinations against bacteria in vitro. World J Microbiol Biotechnol 28(11):3143–3150

    Article  PubMed  CAS  Google Scholar 

  • Kumar SN, Siji JV, Rajasekharan KN, Nambisan B, Mohandas C (2012b) Bioactive stilbenes from a Bacillus sp. N strain associated with a novel rhabditid entomopathogenic nematode. Lett Appl Microbiol 54(5):410–417

    Article  PubMed  CAS  Google Scholar 

  • Lee K, Gray E, Mabood F, Jung W-J, Charles T, Clark SD, Ly A, Souleimanov A, Zhou X, Smith D (2009) The class IId bacteriocin thuricin-17 increases plant growth. Planta 229(4):747–755

    Article  PubMed  CAS  Google Scholar 

  • Li H, Wang X, Han M, Zhao Z, Wang Q, Tang Q, Liu C, Kemp B, Gu Y, Shuang J (2012) Endophytic Bacillus subtilis ZZ120 and its potential application in control of replant diseases. Afr J Biotechnol 11:231–242

    CAS  Google Scholar 

  • Luo S, XuT CL, Rao C, Xiao X (2012) Endophyte-assisted promotion of biomass production and metal-uptake of energy crop sweet sorghum by plant-growth-promoting endophytic Bacillus sp. SLS18. Appl Microbiol Biotechnol 93:1745–1753

    Article  PubMed  CAS  Google Scholar 

  • Makkar RS, Cameotra SS (1998) Production of biosurfactants at mesophilic and thermophilic conditions by a strain of Bacillus subtilis. J Ind Microbiol Biotechnol 20:48–52

    Article  CAS  Google Scholar 

  • Makkar RS, Cameotra SS (2002) An update on the use of unconventional substrates for biosurfactant production and their new applications. Appl Microbiol Biotechnol 58:428–434

    Article  PubMed  CAS  Google Scholar 

  • Malfanova N, Kamilova F, Validov S, Shcherbakov A, Chebotar V, Tikhonovich I, Lugtenberg B (2011) Characterization of Bacillus subtilis HC8, a novel plant-beneficial endophytic strain from giant hogweed. Micro Biotechnol 4(4):523–532

    Article  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance in tomato to salt stress. Plant Physiol Biochem 42:565–572

    Article  PubMed  CAS  Google Scholar 

  • Milner JL, Stohl EA, Handelsman J (1996) Zwittermicin A resistance gene from Bacillus cereus. J Bact 178(14):4266–4272

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mouloud G, Daoud H, Bassem J, Laribi Atef I, Hani B (2013) New bacteriocin from Bacillus clausii strainGM17: purification, characterization, and biological activity. Appl Biochem Biotechnol 171(8):2186–2200

    Article  PubMed  CAS  Google Scholar 

  • Murugappan RM, Begum SB, Roobia RR (2013) Symbiotic influence of endophytic Bacillus pumilus on growth promotion and probiotic potential of the medicinal plant Ocimum sanctum. Symbiosis 60(2):91–99

    Article  Google Scholar 

  • Olubajo BA, Bacon CW (2008) Electrotransformation of Bacillus mojavensis with fluorescent protein markers. J Microbiol Met 74:102–105

    Article  CAS  Google Scholar 

  • Ongena M, Jacques P (2007) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125

    Article  Google Scholar 

  • Ongena J, Emmanuel J, Adam A, Paquot M, Brans A, Joris B (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090

    Article  PubMed  CAS  Google Scholar 

  • Ortiz-Castro R, Valencia-Cantero E, Lopez-Bucio J (2008) Plant growth promotion by Bacillus megaterium involves cytokinin signaling. Plant Signal Behav 3(4):263–265

    Article  PubMed  PubMed Central  Google Scholar 

  • Paul B, Chereyathmanjiyil A, Masih I, Chapuis L, Benoı̂t A (1998) Biological control of Botrytis cinerea causing grey mould disease of grapevine and elicitation of stilbene phytoalexin (resveratrol) by a soil bacterium. FEMS Microbiol Lett 165(1):65–70

    Article  CAS  Google Scholar 

  • Potts M (1994) Desiccation tolerance of prokaryotes. Microbiol Rev 58:755–805

    PubMed  CAS  PubMed Central  Google Scholar 

  • Raaijmaker JM, Bruijn I, Nybroe O, Ongena M (2010) Natural function of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34:1037–1062

    Google Scholar 

  • Rajkumar M, Sandhya S, Prasad MNV, Fretas H (2012) Perspectives of plant-associated microbes in heavy phytoremediation. Biotechnol Adv 30:1562–1574

    Article  PubMed  CAS  Google Scholar 

  • Reyes-Ramírez A, Escudero-Abarca BI, Aguilar-Uscanga G, Hayward-Jones PM, Barboza-Corona JE (2004) Antifungal activity of Bacillus thuringiensis chitinase and its potential for the biocontrol of phytopathogenic fungi in soybean seeds. J Food Sci 69(5):M131–M134

    Article  Google Scholar 

  • Romero DA, Vicente A, Rakotoaly R, Dufour S, Veening J, Arrebola A (2007) The iturin and fengycin families of lipopeptides are key factor in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol Plant Microbe Interact 20:430–440

    Article  PubMed  CAS  Google Scholar 

  • Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9

    Article  PubMed  CAS  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Pare PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sansinenea E, Ortiz A (2011) Secondary metabolites of soil Bacillus spp. Biotechnol Lett 33(8):1523–1538

    Article  PubMed  CAS  Google Scholar 

  • Schalk IJ, Hannauer M, Braud A (2008) Effects of inoculation of biosurfactant-producing Bacillus sp J119 on plant growth and cadmium uptake in a cadmium-amended soil. J Hazard Mater 155:17–22

    Article  Google Scholar 

  • Sgroy V, Cassan F, Masciarelli O (2009) Isolation and characterization of endophytic plant growth promoting (PGPB) or stress homeostasis-regulating bacteria assocaited to the halophyte Prosopis strombulifera. Appl Microbiol 85:371–381

    CAS  Google Scholar 

  • Shali A, Ghasemi S, Ahmadian G, Ranjbar G, Dehestani A, Khalesi N, Motallebi E, Vahed M (2010) Bacillus pumilus SG2 chitinases induced and regulated by chitin, show inhibitory activity against Fusarium graminearum and Bipolaris sorokiniana. Phytoparasitica 38(2):141–147

    Article  Google Scholar 

  • Silo-Suh LA, Stabb EV, Raffel SJ, Handelsman J (1998) Target range of zwittermicin A, an aminopolyol antibiotic from Bacillus cereus. Curr Microbiol 37(1):6–11

    Article  PubMed  CAS  Google Scholar 

  • Smith KP, Goodman RM (1999) Host variation for interactions with beneficial plant-associated microbes. Annu Rev Plant Physiol Plant Mol Biol 37:473–491

    CAS  Google Scholar 

  • Smith KP, Handelsman J, Goodman RM (1999) Genetic basis in plant for interactions with disease-suppressive bacteria. Proc Natl Acad Sci U S A 96:4786–4790

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Snook ME, Mitchell T, Hinton DM, Bacon CW (2009) Isolation and characterization of Leu7-surfactin from the endophytic bacterium Bacillus mojavensis RRC 101, a biocontrol agent for Fusarium verticillioides. Agric Food Chem 57:4287–4295

    Article  CAS  Google Scholar 

  • Srinivasan M, Holl FB, Petersen DJ (1996) Influence of indoleacetic-acid-producing Bacillus isolates on the nodulation of Phaseolus vulgaris by Rhizobium etli under gnotobiotic conditions. Can J Microbiol 42(10):1006–1014

    Article  CAS  Google Scholar 

  • Sturz AV, Christie BR (1995) Endophytic bacterial systems governing red clover growth and development. Ann Appl Biol 126:285–290

    Article  Google Scholar 

  • Sturz AV, Christie BR, Nowaki J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19:1–30

    Article  Google Scholar 

  • Sziderics AH, Rasche F, Trognitz F, Sessitsch A, Wilhelm E (2007) Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L). Can J Microbiol 53:1195–1202

    Article  PubMed  CAS  Google Scholar 

  • Talboys P, Owen D, Healey J, Withers P, Jones D (2014) Auxin secretion by Bacillus amyloliquefaciens FZB42 both stimulates root exudation and limits phosphorus uptake in Triticum aestivum. BMC Plant Biol 14(1):51

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Etten HD, Mansfield JW, Bailey JA, Farmer EE (1994) Two classes of plant antibiotics: phytoalexins versus “phytoanticipins”. Plant Cell Online 6(9):1191–1192

    Article  Google Scholar 

  • Vardharajula S, Ali SZ, Grover M, Reddy G, Bandi V (2011) Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J Plant Interact 6:1–14

    Article  CAS  Google Scholar 

  • Vendan R, Yu Y, Lee S, Rhee Y (2010) Diversity of endophytic bacteria in ginseng and their potential for plant growth promotion. J Microbiol 48(5):559–565

    Article  PubMed  CAS  Google Scholar 

  • Vining LC (1990) Functions of secondary metabolites. Ann Rev Microbiol 44(1):395–427

    Article  CAS  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132

    Article  PubMed  CAS  Google Scholar 

  • Wang SL, Shih IL, Liang TW, Wang CH (2002) Purification and characterization of two antifungal chitinases extracellularly produced by Bacillus amyloliquefaciens V656 in a shrimp and crab shell powder medium. J Agric Food Chem 50(8):2241–2248

    Article  PubMed  CAS  Google Scholar 

  • Wani PA, Kahn MS, Zaidi A (2007) Chromium reduction, plant growth promoting potentials, and metal solubilization by Bacillus sp. isolated from alluvial soil. Curr Microbiol 54:237–243

    Article  PubMed  CAS  Google Scholar 

  • Warren GF (1998) Spectacular increases in crop yields in the twentieth century. Weed Technol 12:752–760

    Google Scholar 

  • Willey JM, Van der Donk WA (2007) Lantibiotics: peptides of diverse structure and function. Ann Rev Microbiol 61:477–501

    Article  CAS  Google Scholar 

  • Yandigeri MS, Meena KK, Singh D, Malviya N, Singh DP, Solanki MK, Yadav AK, Arora DK (2012) Drought-tolerant endophytic actinobacteria promote growth of wheat (Triticum aestivum) under water stress conditions. Plant Growth Regul 68:411–420

    Article  CAS  Google Scholar 

  • Yoshida S, Hiradate S, Tsukamoto T, Hatakeda K, Shirata A (2001) Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from Mulberry leaves. Phytopathology 91(2):181–187

    Article  PubMed  CAS  Google Scholar 

  • Yu GY, Sinclair JB, Hartman GL, Bertagnolli BL (2002) Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol Biochem 34(7):955–963

    Article  CAS  Google Scholar 

  • Yu X, Ai C, Xin L, Zhou G (2011) The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. Eur J Soil Biol 47(2):138–145

    Article  Google Scholar 

  • Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth portion and nickel accumulation in Brassica juncea. Chemosphere 64:991–997

    Article  PubMed  CAS  Google Scholar 

  • Zhao L, Xu Y, Sun R, Deng Z, Yang W, Wei G (2011) Identification and characterization of the endophytic plant growth prompter Bacillus cereus strain mq23 isolated from Sophora alopecuroides root nodules. Braz J Microbiol 42(2):567–575

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Choi YL, Sun M, Yu Z (2008) Novel roles of Bacillus thuringiensis to control plant diseases. Appl Microbiol Biotechnol 80(4):563–572

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles W. Bacon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Bacon, C.W., Palencia, E.R., Hinton, D.M. (2015). Abiotic and Biotic Plant Stress-Tolerant and Beneficial Secondary Metabolites Produced by Endophytic Bacillus Species. In: Arora, N. (eds) Plant Microbes Symbiosis: Applied Facets. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2068-8_8

Download citation

Publish with us

Policies and ethics