Skip to main content

Introduction

  • Chapter
  • First Online:
Broadening the Genetic Base of Grain Legumes

Abstract

Over the last about 60 years, the global scientific community has become increasingly aware of the implications of genetic erosion in terms of its impact on environmental and agricultural sustainability (Ford-Lloyd et al. 2008). Reductions in both the number of species and the level of intraspecific variation have resulted in crops becoming more vulnerable to unpredictable weather patterns, epidemics of pests and diseases and fluctuations in global markets. All these in combination directly affect the food availability for human consumption. The ability to respond constructively to these situations requires continuing access to a broad range of novel forms of genetic variation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta-Gallegos AJ, Kelly JD, Gepts P (2008) Prebreeding in common bean and use of genetic diversity from wild germplasm. Crop Sci 47:44–59

    Google Scholar 

  • Agrios GN (1978) Plant pathology, 2nd edn. Academic, London

    Google Scholar 

  • Ahmad F, Slinkard AE (1992) Genetic relationships in the genus Cicer L. as revealed by polyacrylamide gel electrophoresis of seed storage proteins. Theor Appl Genet 84:688–692

    PubMed  CAS  Google Scholar 

  • Bisht IS, Singh M (2013) Asian vigna. In: Singh M, Upadhyaya HD, Bisht IS (eds) Genetic and genomic resources of grain legume improvement. Elsevier Science, London, pp 237–267

    Chapter  Google Scholar 

  • Bisht IS, Bhat KV, Lakhanpaul S, Latha M, Jayan PK, Biswas BK, Singh AK (2005) Diversity and genetic resources of wild Vigna species in India. Genet Resour Crop Evol 52:53–68

    Article  Google Scholar 

  • Broerse JEW, Visser B (1996) Assessing the potential. In: Bunders J, Haverkort B, Hiemstra W (eds) Biotechnology: building on farmers’ knowledge. Macmillan, London/Basingstoke, pp 131–180

    Google Scholar 

  • Bunders J, Loeber A, Broers JEW, Havertkort B (1996) An integrated approach to biotechnology development. In: Bunders J, Haverkort B, Hiemstra W (eds) Biotechnology; building on farmers’ knowledge. Macmillan, London/Basingstoke, pp 201–227

    Google Scholar 

  • Chahal GS, Gosal SS (2002) Principles and procedures of plant breeding. Narosa Publishing House, New Delhi, p 603

    Google Scholar 

  • Chandel KPS, Joshi BS (1983) Multivariate analysis in green-seeded pea. Indian J Agric Sci 53(4):198–200

    Google Scholar 

  • Chang TT (1985) Principles of genetic conservation. Iowa State J Res 59:325–348

    Google Scholar 

  • Cooper HD, Spillane C, Hodgkin T (2001) Broadening the genetic base of crop production. CABI, Oxford, p 452

    Book  Google Scholar 

  • Croser JS, Ahmad F, Clarke HJ, Siddique KHM (2003) Utilization of wild Cicer in chickpea improvement – progress, constraints, and prospects. Aust J Agric Res 54:429–444

    Article  Google Scholar 

  • de Boef WST, Berg T, Haverkort B (1996) Crop genetic resources. In: Bunders J, Haverkort B, Hiemstra W (eds) Biotechnology; building on farmers’ knowledge. Macmillan, London/Basingstoke, pp 103–128

    Google Scholar 

  • Delannay X, Rodgers DM, Palmer RG (1983) Relative genetic contributions among ancestral lines to North American soybean cultivars. Crop Sci 23:944–949

    Article  Google Scholar 

  • Duc G, Bao SY, Baum M, Redden B, Sadiki M, Suso MJ, Vishniakova M, Zong XX (2010) Diversity maintenance and use of Vicia faba L. genetic resources. Field Crop Res 115:270–278

    Article  Google Scholar 

  • Edwards O, Singh KB (2006) Resistance to insect pests: what do legumes have to offer? Euphytica 147:273–285

    Article  Google Scholar 

  • Ehlers JD, Hall AE (1997) Cowpea (Vigna unguiculata L. Walp.). Field Crop Res 53:187–204

    Article  Google Scholar 

  • Ford-Lloyd BV, Brar D, Khush GS, Jackson MT, Virk PS (2008) Genetic erosion over time of rice landrace agrobiodiversity. Plant Genet Resour Charact Util 7:163–168

    Article  Google Scholar 

  • Halward TM, Stalker HT, LaRau EA, Kochert GD (1992) Genetic Variation detectable with molecular markers among unadapted germplasm resources of cultivated peanut and related wild species. Genome 34:1013–1020

    Article  Google Scholar 

  • Higgins VJ, Huogen Lu, Xing Ti, Gelli A, Blumwald E (1998) The gene-for-gene concept and beyond: interactions and signals. Can J Plant Pathol 20:150–157

    Article  CAS  Google Scholar 

  • Jain HK (1975) Breeding for yield and other attributes in grain legumes. Indian J Genet Plant Breed 35:169–187

    Google Scholar 

  • Keneni G, Bekele E, Imtiaz M, Dagne K (2012) Genetic vulnerability of modern crop cultivars: causes, mechanism and remedies. Int J Plant Res 2(3):69–79

    Article  Google Scholar 

  • Kumar S, Gupta S, Chandra S, Singh BB (2004) How wide is the genetic base of pulse crops. In: Ali M, Singh BB, Kumar S, Dhar V (eds) Pulses in new perspective. Indian Society of Pulse Research and Development, IIPR, Kanpur, pp 211–221

    Google Scholar 

  • Link W, Dixkens C, Singh M, Schwall M, Melchinger AE (1995) Genetic diversity in European and Mediterranean faba bean germplasm revealed by RAPD markers. Theor Appl Genet 90:27–32

    Article  PubMed  CAS  Google Scholar 

  • Mallikarjuna N, Moss JP (1995) Production of hybrids between Cajanus platycarpus and Cajanus cajan. Euphytica 83(1):43–46

    Article  Google Scholar 

  • Mallikarjuna N, Saxena KB (2002) Production of hybrids between Cajanus acutifolius and C. cajan. Euphytica 124(1):107–110

    Article  CAS  Google Scholar 

  • Marshall DR (1977) The advantages and hazards of genetic homogeneity. In: Day PR (ed) The genetic basis of epidemics in agriculture. The New York Academy of Sciences, New York, pp 1–20

    Google Scholar 

  • Reddy LJ, Kameswara Rao N, Saxena KB (2001) Production and characterization of hybrids between Cajanus cajan x C. reticulatus var. grandifolius. Euphytica 121:93–98

    Article  Google Scholar 

  • Rubenstein DK, Heisey P, Shoemaker R, Sullivan J, Frisvold G (2005) Crop genetic resources: an economic appraisal. Economic Information Bulletin No. 2. United States Department of Agriculture (USDA), Washington, DC. www.ers.usda.gov

  • Russell GE (1978) Plant breeding for pest and diseases resistance. Butterworths, London

    Google Scholar 

  • Sarker A, Agrawal S, Shrestha R, Kumar J, Uddin MJ (2010) Broadening the genetic base of lentil in South Asia. In: ASA, CSSA, and SSSA international annual meetings. https://a-c-s.confex.com/crops/2010am/webprogram/Paper61096.html

  • Sharma JR (2001) Principles and practice of plant breeding. Tata McGraw-Hill, New Delhi

    Google Scholar 

  • Siddique KHM, Brinsmead RB, Knight R, Knights EJ, Paull JG, Rose IA (2000) Adaptation of chickpea and faba bean to Australia. In: Knights R (ed) Linking research and marketing opportunities for pulses in the 21st century. Kluwer Academic, Dordrecht, pp 289–303

    Chapter  Google Scholar 

  • Simmonds NW (1979) Principles of crop improvement. Longman, London/New York

    Google Scholar 

  • Singh DP (1994) Breeding for resistance to diseases in mungbean: problems and prospects. In: Asthana AN, Kim DH (eds) Recent advances in pulses research. Indian Society of Pulses Research (IIPR), Kanpur, pp 152–164

    Google Scholar 

  • Singh SP (2001) Broadening the genetic base of common bean cultivars. Crop Sci 41:1659–1675

    Article  Google Scholar 

  • Singh BD (2002) Plant breeding: principles and methods. Kalyani Publishers, New Delhi

    Google Scholar 

  • Singh M, Bisht IS, Sardana S, Gautam NK, Husain Z, Gupta S, Singh BB, Dwivedi NK (2006) Asiatic vigna. In: Dhillon BS, Saxena S, Agrawal A, Tyagi RK (eds) Plant genetic resources: food grain crops. Narosa Publishing House, New Delhi, pp 275–301

    Google Scholar 

  • Smartt J (1990) The old world pulses: vigna species. In: Grain legume: evolution and genetic resources. Cambridge University Press, Cambridge

    Chapter  Google Scholar 

  • Smolders H (2006) Enhancing farmers’ role in crop development: framework information for participatory plant breeding in farmer field schools. Centre for Genetic Resources, Wageningen University and Research Centre, Wageningen

    Google Scholar 

  • Subbarao GV, Johansen C, Kumar Rao JVDK, Jana MK (1990) Salinity tolerance in F1 hybrids of pigeonpea and a tolerant wild relative. Crop Sci 30(4):785–788

    Article  CAS  Google Scholar 

  • Talekar NS (1994) Sources of resistance to major insect pests of mungbean in Asia. In: Asthana AN, Kim DH (eds) Recent advances in mungbean research. Indian Society of Pulses Research (IIPR), Kanpur, pp 40–49

    Google Scholar 

  • Tickoo JL, Gajraj Mahto R, Manji C (1994) Plant type in mungbean (Vigna radiata L. Wilczek). In: Asthana AN, Kim DH (eds) Recent advances in mungbean research. Indian Society of Pulses Research (IIPR), Kanpur, pp 197–213

    Google Scholar 

  • Tilahun M (1995) Indigenous risk management strategies of small farms in the Central Rift Valley of Ethiopia. Food security, nutrition and poverty alleviation in Ethiopia: problems and prospects. In: Demeke M, Wolday A, Simeon E, Zegeye T (eds) Proceedings of the inaugural and first annual conference of the Agricultural Economics Society of Ethiopia, Addis Ababa, 8–9 June 1995, pp 85–108

    Google Scholar 

  • Wallace DH, Yan W (1998) Plant breeding and whole-system crop physiology. University Press, Cambridge

    Google Scholar 

  • Wang H, Xuxiao Zong X, Jianping Guan J, Yang T, Sun X, Yu Y, Redden R (2012) Genetic diversity and relationship of global faba bean (I L.) germplasm revealed by ISSR markers. Theor Appl Genet 124:789–797

    Article  PubMed  Google Scholar 

  • Weltzien E, Fiscbeck G (1990) Performance and variability of local barley landraces in Near-Eastern environments. Plant Breed 104:58–67

    Article  Google Scholar 

  • Witcombe JR, Hash CT (2000) Resistance gene deployment strategies in cereal hybrids using marker-assisted selection: gene pyramiding, three-way hybrids, and synthetic parent populations. Euphytica 112:175–186

    Article  Google Scholar 

  • Wolfe MS, Barrett JA (1977) Population genetics of powdery mildew epidemics. In: Day PR (ed) The genetic basis of epidemics in agriculture. The New York Academy of Sciences, New York, pp 151–163

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohar Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Singh, M., Bisht, I.S., Dutta, M. (2014). Introduction. In: Singh, M., Bisht, I., Dutta, M. (eds) Broadening the Genetic Base of Grain Legumes. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2023-7_1

Download citation

Publish with us

Policies and ethics