Skip to main content

Rhizobial Extracellular Signaling Molecules and Their Functions in Symbiotic Interactions with Legumes

  • Chapter
  • First Online:
Quorum Sensing vs Quorum Quenching: A Battle with No End in Sight

Abstract

Rhizobia (symbiotic nitrogen-fixing soil bacteria) and their legume host plants communicate with each other via signaling molecules such as flavonoids and Nod factors. In addition, rhizobia use separate “quorum sensing” (QS) systems to communicate among themselves. QS systems in rhizobia have been implicated as regulators of plasmid transfer, nodulation efficiency, nitrogen fixation, polysaccharide production and degradation, swarming motility, stress adaptation, and biofilm formation. Most rhizobial species studied to date appear to utilize one or more acyl homoserine lactone (AHL)-based QS systems. This chapter summarizes our current knowledge of QS signaling molecules and their functions in rhizobia, particularly the widespread genera Sinorhizobium, Mesorhizobium, Rhizobium, and Bradyrhizobium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlgren NA, Harwood CS, Schaefer AL, Giraud E, Greenberg P (2011) Aryl-homoserine lactone quorum sensing in stem-nodulating photosynthetic bradyrhizobia. Proc Natl Acad Sci U S A 108:7183–7188

    Article  PubMed  PubMed Central  Google Scholar 

  • Ampomah OY, Huss-Danell K (2011) Nodulation of Thermopsis lupinoides by a Mesorhizobium huakuii strain with a unique nodA gene in Kamchatka, Russia. Appl Environ Microbiol 77:5513–5516

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bogino P, Banchio E, Rinaudi L, Cerioni G, Bonfiglio C, Giordano W (2006) Peanut (Arachis hypogaea) response to inoculation with Bradyrhizobium sp. in soils of Argentina. Ann Appl Biol 148:207–212

    Article  Google Scholar 

  • Bogino P, Oliva MM, Sorroche FG, Giordano W (2013) The role of bacterial biofilms and surface components in plant-bacterial associations. Int J Mol Sci 14:15838–15859

    Article  PubMed  PubMed Central  Google Scholar 

  • Burmølle M, Ren D, Bjarnsholt T, Sørensen S (2014) Interactions in multispecies biofilms: do they actually matter? Trends Microbiol 22:84–91

    PubMed  Google Scholar 

  • Cao H, Yang M, Zheng H, Zhang J, Zhong Z, Zhu J (2009) Complex quorum-sensing regulatory systems regulate bacterial growth and symbiotic nodulation in Mesorhizobium tianshanense. Arch Microbiol 191:283–289

    Article  PubMed  CAS  Google Scholar 

  • Cha CE, Gao O, Chen YC, Shaw PD, Farrand SK (1998) Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria. Mol Plant Microbe Interact 11:1119–1129

    Article  PubMed  CAS  Google Scholar 

  • Charoenpanich P, Meyer S, Becker A, McIntosh M (2013) Temporal expression program of quorum sensing-based transcription regulation in Sinorhizobium meliloti. J Bacteriol 195:3224–3236

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cubo MT, Economou A, Murphy G, Johnston AW, Downie JA (1992) Molecular characterization and regulation of the rhizosphere-expressed genes rhiABCR that can influence nodulation by Rhizobium leguminosarum biovar viciae. J Bacteriol 174:4026–4035

    PubMed  CAS  PubMed Central  Google Scholar 

  • Daniels R, De Vos DE, Desair J et al (2002) The cin quorum sensing locus of Rhizobium etli CNPAF512 affects growth and symbiotic nitrogen fixation. J Biol Chem 277:462–468

    Article  PubMed  CAS  Google Scholar 

  • Daniels R, Vanderleyden J, Michiels J (2004) Quorum sensing and swarming migration in bacteria. FEMS Microbiol Rev 28:261–289

    Article  PubMed  CAS  Google Scholar 

  • Danino VE, Wilkinson A, Edwards A, Downie JA (2003) Recipient-induced transfer of the symbiotic plasmid pRL1JI in Rhizobium leguminosarum bv. viciae is regulated by a quorum-sensing relay. Mol Microbiol 50:511–525

    Article  PubMed  CAS  Google Scholar 

  • Downie JA, Walker SA (1999) Plant responses to nodulation factors. Curr Opin Plant Biol 2:483–489

    Article  PubMed  CAS  Google Scholar 

  • Edwards A, Frederix M, Wisniewski-Dye F, Jones J, Zorreguieta A, Downie JA (2009) The cin and rai quorum-sensing regulatory systems in Rhizobium leguminosarum are coordinated by ExpR and CinS, a small regulatory protein coexpressed with CinI. J Bacteriol 191:3059–3067

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Frederix M, Edwards A, McAnulla C, Downie JA (2011) Co-ordination of quorum-sensing regulation in Rhizobium leguminosarum by induction of an anti-repressor. Mol Microbiol 81:994–1007

    Article  PubMed  CAS  Google Scholar 

  • Gao M, Teplitski M, Robinson JB, Bauer WD (2003) Production of substances by Medicago truncatula that affect bacterial quorum sensing. Mol Plant Microbe Interact 16:827–834

    Article  PubMed  CAS  Google Scholar 

  • Gao M, Chen H, Eberhard A et al (2005) sinI- and expR-dependent quorum sensing in Sinorhizobium meliloti. J Bacteriol 187:7931–7944

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gao YJ, Zhong ZT, Sun KJ, Wang H, Zhu J (2006) The quorum sensing system in a plant bacterium Mesorhizobium huakuii affects growth rate and symbiotic nodulation. Plant Soil 286:53–60

    Article  CAS  Google Scholar 

  • Gao M, Coggin A, Yagnik K, Teplitski M (2012) Role of specific quorum-sensing signals in the regulation of exopolysaccharide II production within Sinorhizobium meliloti spreading colonies. PLoS One 7(8):e42611

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • He X, Chang W, Pierce DL, Seib LO, Wagner J, Fuqua C (2003) Quorum sensing in Rhizobium sp. strain NGR234 regulates conjugal transfer (tra) gene expression and influences growth rate. J Bacteriol 185:809–822

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hoang HH, Gurich N, Gonzalez JE (2008) Regulation of motility by the ExpR/Sin quorum-sensing system in Sinorhizobium meliloti. J Bacteriol 190:861–871

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kaneko T, Nakamura Y, Sato S et al (2000) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7:381–406

    Article  PubMed  CAS  Google Scholar 

  • Lang J, Faure D (2014) Functions and regulation of quorum-sensing in Agrobacterium tumefaciens. Front Plant Sci 5:14. doi:10.3389/fpls.2014.00014

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Z, Nair SK (2012) Quorum sensing: how bacteria can coordinate activity and synchronize their response to external signals? Protein Sci 21:1403–1417

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lindemann A, Pessi G, Schaefer AL et al (2011) Isovaleryl-homoserine lactone, an unusual branched-chain quorum-sensing signal from the soybean symbiont Bradyrhizobium japonicum. Proc Natl Acad Sci U S A 108:16765–16770

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lithgow JK, Wilkinson A, Hardman A, Rodelas B, Wisniewski-Dye F, Williams P, Downie JA (2000) The regulatory locus cinRI in Rhizobium leguminosarum controls a network of quorum-sensing loci. Mol Microbiol 37:81–97

    Article  PubMed  CAS  Google Scholar 

  • Loh J, Stacey G (2001) Feedback regulation of the Bradyrhizobium japonicum nodulation genes. Mol Microbiol 41:1357–1364

    Article  PubMed  CAS  Google Scholar 

  • Loh J, Carlson RW, York WS, Stacey G (2002) Bradyoxetin, a unique chemical signal involved in symbiotic gene regulation. Proc Natl Acad Sci U S A 99:14446–14451

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Marketon MM, González JE (2002) Identification of two quorum-sensing systems in Sinorhizobium meliloti. J Bacteriol 148:3466–3475

    Article  Google Scholar 

  • Marketon MM, Gronquist MR, Eberhard A, Gonzalez JE (2002) Characterization of the Sinorhizobium meliloti sinR/sinI locus and the production of novel N-acyl homoserine lactones. J Bacteriol 184:5686–5695

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mathesius U, Mulders S, Gao M, Teplitski M, Caetano-Anolles G, Rolfe BG, Bauer WD (2003) Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc Natl Acad Sci U S A 100:1444–1449

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • McIntosh M, Meyer S, Becker A (2009) Novel Sinorhizobium meliloti quorum sensing positive and negative regulatory feedback mechanisms respond to phosphate availability. Mol Microbiol 74:1238–1256

    Article  PubMed  CAS  Google Scholar 

  • Nievas F, Bogino P, Sorroche F, Giordano W (2012) Detection, characterization, and biological effect of quorum-sensing signaling molecules in peanut-nodulating bradyrhizobia. Sensors-Basel 12:2851–2873

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pellock BJ, Teplitski M, Boinay RP, Bauer WD, Walker GC (2002) A LuxR homolog controls production of symbiotically active extracellular polysaccharide II by Sinorhizobium meliloti. J Bacteriol 184:5067–5076

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pongsilp N, Triplett EW, Sadowsky MJ (2005) Detection of homoserine lactone like quorum sensing molecules in Bradyrhizobium strains. Curr Microbiol 51:250–254

    Article  PubMed  CAS  Google Scholar 

  • Ramsay JP, Sullivan JT, Jambari N et al (2009) A LuxRI-family regulatory system controls excision and transfer of the Mesorhizobium loti strain R7A symbiosis island by activating expression of two conserved hypothetical genes. Mol Microbiol 73:1141–1155

    Article  PubMed  CAS  Google Scholar 

  • Ramsay JP, Major AS, Komarovsky VM et al (2013) A widely conserved molecular switch controls quorum sensing and symbiosis island transfer in Mesorhizobium loti through expression of a novel antiactivator. Mol Microbiol 87:1–13

    Article  PubMed  CAS  Google Scholar 

  • Rinaudi L, Giordano W (2010) An integrated view of biofilm formation in Rhizobia. FEMS Microbiol Lett 304:1–11

    Article  PubMed  CAS  Google Scholar 

  • Rodelas B, Lithgow JK, Wisniewski-Dye F et al (1999) Analysis of quorum-sensing dependent control of rhizosphere-expressed (rhi) genes in Rhizobium leguminosarum bv. viciae. J Bacteriol 181:3816–3823

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rosemeyer V, Michiels J, Verreth C, Vanderleyden J (1998) luxI- and luxR-homologous genes of Rhizobium etli CNPAF512 contribute to synthesis of autoinducer molecules and nodulation of Phaseolus vulgaris. J Bacteriol 180:815–821

    PubMed  CAS  PubMed Central  Google Scholar 

  • Russo DM, Williams A, Edwards A et al (2006) Proteins exported via the PrsD-PrsE type I secretion system and the acidic exopolysaccharide are involved in biofilm formation by Rhizobium leguminosarum. J Bacteriol 188:4474–4486

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ryan RP, Dow JM (2008) Diffusible signals and interspecies communication in bacteria. Microbiology 154:1845–1858

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Contreras M, Wolfgang BD, Mengsheng G, Robinson JB, Downie A (2007) Quorum sensing regulation in rhizobia and its role in symbiotic interactions with legumes. Philos Trans R Soc B 362:1149–1163

    Article  CAS  Google Scholar 

  • Schmeisser C, Liesegang H, Krysciak D et al (2009) Rhizobium sp. Strain NGR234 possesses a remarkable number of secretion systems. Appl Environ Microbiol 75:4035–4045

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schripsema J, de Rudder KE, van Vliet TB et al (1996) Bacteriocin small of Rhizobium leguminosarum belongs to the class of N-acyl-L-homoserine lactone molecules, known as autoinducers and as quorum sensing co-transcription factors. J Bacteriol 178:366–371

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sorroche F, Rinaudi L, Zorreguieta A, Giordano W (2010) EPS II-dependent autoaggregation of Sinorhizobium meliloti planktonic cells. Curr Microbiol 61:465–470

    Article  PubMed  CAS  Google Scholar 

  • Teplitski M, Eberhard A, Gronquist MR, Gao M, Robinson JB, Bauer WD (2003) Chemical identification of N-acyl homoserine lactone quorum-sensing signals produced by Sinorhizobium meliloti strains in defined medium. Arch Microbiol 180:494–497

    Article  PubMed  CAS  Google Scholar 

  • Thorne SH, Williams HD (1999) Cell density-dependent starvation survival of Rhizobium leguminosarum bv. phaseoli: identification of the role of an N-acyl homoserine lactone in adaptation to stationary-phase survival. J Bacteriol 181:981–990

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wang H, Zhong Z, Cai T, Li S, Zhu J (2004) Heterologous overexpression of quorum-sensing regulators to study cell-density-dependent phenotypes in a symbiotic plant bacterium Mesorhizobium huakuii. Arch Microbiol 182:520–525

    Article  PubMed  CAS  Google Scholar 

  • Westenberg DJ (2002) Evidence of AHL autoinducer production by the soybean symbiont Bradyrhizobium japonicum. In: Finan et al (eds) Nitrogen fixation: global perspectives. CABI Publishing/Oxford University Press, Cary

    Google Scholar 

  • Wilkinson A, Danino V, Wisniewski-Dye F, Lithgow JK, Downie JA (2002) N-acyl-homoserine lactone inhibition of rhizobial growth is mediated by two quorum-sensing genes that regulate plasmid transfer. J Bacteriol 184:4510–4519

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wisniewski-Dye F, Downie JA (2002) Quorum-sensing in Rhizobium. Antonie Van Leeuwenhoek 81:397–407

    Article  PubMed  CAS  Google Scholar 

  • Yang M, Sun K, Zhou L, Yang R, Zhong Z, Zhu J (2009) Functional analysis of three AHL autoinducer synthase genes in Mesorhizobium loti reveals the important role of quorum sensing in symbiotic nodulation. Can J Microbiol 55:210–214

    Article  PubMed  CAS  Google Scholar 

  • Zarkani AA, Stein E, Röhrich CR, Schikora M, Evguenieva-Hackenberg E, Degenkolb T, Vilcinskas A, Klug G, Kogel KH, Schikora A (2013) Homoserine lactones influence the reaction of plants to rhizobia. Int J Mol Sci 14:17122–17171

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng Z, Fuqua C, Chen L (2012) The quorum sensing transcriptional regulator TraR has separate binding sites for DNA and the anti-activator. Biochem Biophys Res Commun 418:396–401

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Chai Y, Zhong Z, Li S, Winans SC (2003) Agrobacterium bioassay strain for ultrasensitive detection of N-acylhomoserine lactone-type quorum sensing molecules: detection of autoinducers in Mesorhizobium huakuii. Appl Environ Microbiol 69:6949–6953

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This review and studies by the author’s group described herein were supported by grants from the Secretaría de Ciencia y Técnica (UNRC), Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), and Consejo Nacional de Investigaciones Científicas y Técnicas of the República Argentina (CONICET). WG is a Career Member of CONICET. Thanks to Dr. S. Anderson for English editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Giordano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Giordano, W. (2015). Rhizobial Extracellular Signaling Molecules and Their Functions in Symbiotic Interactions with Legumes. In: Kalia, V. (eds) Quorum Sensing vs Quorum Quenching: A Battle with No End in Sight. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1982-8_12

Download citation

Publish with us

Policies and ethics