Signcryption with Delayed Identification

Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 91)

Abstract

This paper introduces a novel cryptographic primitive called Signcryption with Delayed Identification (SCDI), where a sender signcrypts a message \(m\) such that the reciever can unsigncrypt it using his private key to recover \(m\), but cannot get any information about the identity of the sender. The sender at a later point of time can claim the ownership of the message \(m\) by providing a “tag”, which proves that the signcryptext was generated by the sender. As an application of the primitive, it is shown that it can be used for safe and anonymous contractual bidding, submission of papers in a journal or conference, etc. As regards security, formal definitions of security for the proposed primitive are given and at the end, a generic construction secure with respect to the proposed definitions is given.

Keywords

Partial signature Signcryption Random oracle model 

References

  1. 1.
    An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and encryption. In: Proceedings of the EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107. Springer (2002)Google Scholar
  2. 2.
    Baek, J., Steinfeld, R., Zheng, Y.: Formal proofs for the security of signcryption. J. Cryptol. 20(2), 203–235 (2007)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key encryption. In: Proceedings of the ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582. Springer (2001)Google Scholar
  4. 4.
    Bellare, M., Duan, S.: Partial signatures and their applications, Cryptology ePrint Archive, Report 2009/336. http://eprint.iacr.org/2009/336 (2009)
  5. 5.
    Bellare, M., Rogaway, P.: Optimal asymmetric encryption—how to encrypt with RSA. In: Proceedings of the EUROCRYPT ’94. LNCS, vol. 950. Springer (1995)Google Scholar
  6. 6.
    Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Proceedings of the 1st CCS, pp. 62–73. ACM Press, New York (1993)Google Scholar
  7. 7.
    Coron, J.S., Handschuh, H., Joye, M., Paillier, P., Pointcheval, D., Tymen, C.: GEM: A generic chosen-ciphertext secure encryption method. In: Proceedings of the CT-RSA 2002. LNCS, vol. 2271, pp. 263–276. Springer (2002)Google Scholar
  8. 8.
    Deva Selvi, S.S., Vivek, S.S., Shiriam, J., Kalaivani, S., Pandu Rangan, C.: Identity based aggregate signcryption schemes. In: Proceedings of the INDOCRYPT 2009. LNCS, vol. 5922, pp. 378–397Google Scholar
  9. 9.
    Das, A., Adhikari, A.: An efficient IND-CCA2 secure Paillier-based cryptosystem. Inf. Process. Lett. 112, 885–888 (2012) (Elsevier, 2012)Google Scholar
  10. 10.
    Fujisaki, E., Okamoto, T.: How to enhance the security of public-key encryption at minimum cost. In: Proceedings of the PKC ’99. LNCS, vol. 1560, pp. 53–68. Springer (1999)Google Scholar
  11. 11.
    Hang, Q., Wong, D.S., Yang, G.: Heterogeneous signcryption with key privacy. Comput. J. 54 (4), 525–536 (2011)Google Scholar
  12. 12.
    Ma, C., Chen, K., Zheng, D., Liu, S.: Efficient and proactive threshold signcryption,. In: Proceedings of the ISC 2005. LNCS, vol. 3650, pp. 233–243. Springer (2005)Google Scholar
  13. 13.
    Malone-Lee, J.: Identity-Based Signcryption, Cryptology ePrint Archive, Report 2002/098. http://eprint.iacr.org/2002/098
  14. 14.
    Okamoto, T., Pointcheval, D.: REACT: Rapid enhanced-security asymmetric cryptosystem transform. In: Proceedings of the CT-RSA 2001. LNCS vol. 2020, pp. 159–174. Springer (2001)Google Scholar
  15. 15.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Proceedings of the EUROCRYPT ’99. LNCS, vol. 1592, pp. 223–238. Springer (1999)Google Scholar
  16. 16.
    Pointcheval, D.: Chosen-ciphertext security for any one-way cryptosystem. In: Proceedings of the PKC 2000. LNCS, vol. 1751, pp. 29–146. Springer (2000)Google Scholar
  17. 17.
    Zheng, Y.: Digital signcryption or how to achieve cost (signature & encryption) \(\ll \) cost(signature) \(+\) cost(encryption). In: Proceedings of the CRYPTO 97. LNCS, vol. 1294, pp. 165–179. Springer (1997)Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Department of MathematicsSt. Xavier’s CollegeKolkataIndia
  2. 2.Department of Pure MathematicsUniversity of CalcuttaKolkataIndia

Personalised recommendations