Skip to main content

Thermo Hydrodynamic Lubrication Characteristics of Power Law Fluids in Rolling/Sliding Line Contact

  • Conference paper
  • First Online:
Proceedings of International Conference on Advances in Tribology and Engineering Systems

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

Hydrodynamic lubrication of rollers having the same dimension and moving with different velocities is studied assuming the consistency of the non-Newtonian incompressible power law lubricants to vary with pressure and the mean film temperature. The equations of motion, continuity, and momentum energy are solved first analytically and then numerically by Runge–Kutta Fehlberg method. Some important bearing characteristics are analyzed and displayed in the form of some graphs to study their behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

H:

Film thickness at x = −\( \,x_{1} \)

h:

Lubricant film thickness

ho :

Minimum film thickness

\( \overline{h} \) :

h/ho etc.

m:

Lubricant consistency

mo :

Initial consistency temperature

n:

Consistency index of the power law lubricant

p:

Hydrodynamic pressure

R:

Radius of the equivalent cylinder

T:

Lubricant temperature

\( T_{11} \) :

Film temperature for y ≥ δ in region-I etc.

\( T_{m} \) :

Mean film temperature

\( T_{0} \) :

Ambient temperature

\( \overline{T}_{Fh + } \) :

Traction force (= - (2\( \alpha \) \( T_{Fh} \)/ho)) etc.

\( U_{1},\,\,U_{2} \) :

Cylinders velocities at y = - h and y = h respectively

u:

Velocity of the lubricant in x-direction

\( u_{m} \) :

The mean velocity of the lubricant

v:

Velocity of the lubricant in y-direction

W:

Load in y-direction

\( \overline{W} \) :

Dimensionless load (= \( \alpha \)W/(Rho)½)

\( \overline{x} \) :

x/(2Rho)½) etc.

\( \,x_{1} \) :

Point of maximum pressure

\( x_{2} \) :

Cavitation point

\( \varphi \) :

\( \frac{{\rho \,c\,u_{m} }}{k}\left( {\frac{{dT_{m} }}{dx}} \right) \)

\( \alpha ,\beta \) :

Pressure and temperature coefficients

Reference:

  1. Ghosh MK, Hamrock BJ (1985) Thermal EHD lubrication of line contacts. ASLE 28:159–171

    Article  Google Scholar 

  2. Yung-Kuang Y, Ming-Chang J (2004) Analysis of viscosity interaction on the misaligned conical-cylindrical bearing. Trib Intl 37:51–60

    Article  Google Scholar 

  3. Sadeghi F, Sui PC (1990) Thermal EHD lubrication of rolling/sliding contacts. ASME J Trib 112:189–195

    Article  Google Scholar 

  4. Savage MD (1983) Variable speed coating with purely viscous non-newtonian fluid. J Appl Math Phy (ZAMP) 34:358–369

    Article  Google Scholar 

  5. Prasad D, Shukla JB, Singh P, Sinha P, Chhabra RP (1991) Thermal effects in lubrication of asymmetrical rollers. Trib Intl 24:239–246

    Article  CAS  Google Scholar 

  6. Lin T-R (1992) Thermal EHD lubrication of rolling/sliding contacts with a power-law fluid. WEAR 54:77–93

    Google Scholar 

  7. Dowson D, Higginson GR (1961) New roller bearing lubrication formula. Engineering (London) 192:158

    Google Scholar 

  8. Cheng HS (1965) A refined solution to the thermal EHD lubrication of rolling and sliding cylinders. ASLE Trans 8:397–410

    Google Scholar 

  9. Hirst W, Moore, AJ (1978) EHD Lubrication of High Pressure. In: Proceedings of Royal Society A, vol 360. London, pp 403–425

    Google Scholar 

  10. Chu H-M, Li W-L, Chang YP (2006) Thin film EHL – a power law fluid model”. Trib Intl 39:1474–1481

    Article  Google Scholar 

  11. Hsiao HS, Hamrock BJ (1994) Temperature distribution and thermal degradation of the lubricant in EHL line contact conjunctions. ASME J Trib 116:794–798

    Article  Google Scholar 

  12. Punit K, Khonsari MM (2008) Combined effects of shear thinning and viscous heating on EHL characteristics of rolling/sliding line contacts.J Trib vol 130. 041505-1–041505-13

    Google Scholar 

  13. Punit K, Khonsari MM (2009) On the role of lubricant rheology and piezo viscous properties in line- point contact EHL. Trib Intl 42:1522–1530

    Article  Google Scholar 

  14. Sinha P, Singh C (1982) Lubrication of cylinder on a plane with a non-newtonian fluid considering cavitation. ASME J Lubr Techn 104:168

    Article  Google Scholar 

  15. Punit K, Jain SC, Ray S (2008) Influence of polymeric fluid additives in EHL rolling/sliding line contacts. Trib. Intl 41:482–492

    Article  Google Scholar 

  16. Khan H, Sinha P, Saxena A (2009) A simple algorithm for thermo-elasto-hydrodynamic lubrication problems. Int J Res Rev Appl Sci 1(3):265

    Google Scholar 

  17. Zhu D (2011) Elastohydrodynamic Lubrication: A gateway to interfacial mechanics-review and prospectus. J Trib 133:041001–041014

    Article  Google Scholar 

  18. Morales-Espejel GE, Wemekamp AW (2008) Ertel-grubin methods in elasto hydrodynamic lubrication – a review. IMechE J Engg Trib 222:15–34

    Article  Google Scholar 

  19. Wang Z, Jin X, Keer LM, Wang Q (2012) A numerical approach for analyzing three-dimensional steady-state rolling contact including creep using a fast semi-analytical method. Trib Trans 55:446–457

    Article  CAS  Google Scholar 

  20. Jang JY, Khonsari MM (2010) Elastohydrodynamic line contact of compressible shear thinning fluids with consideration of the surface roughness. ASME J Trib 132,034501-1

    Google Scholar 

  21. Rong-Tsong L, Hamrock BJ (1989) “Squeezing and entraining motion in non-conformal line contacts: part-I-hydrodynamic lubrication. ASME J Trib 111:1–7

    Article  Google Scholar 

  22. Wang SH, Hua DY, Zang HH (1988) A full numerical EHL solution for line contacts under pure rolling condition with a non- newtonian rheological model. ASME J Trib 110:583–586

    Article  Google Scholar 

  23. Bruyere V, Fillot N, Morales-Espejel GE, Vergne P (2012) Computational fluid dynamics and fully elasticity model for sliding line thermal EHD contact. Tribo Inter 46:3–13

    Article  Google Scholar 

  24. Saini PK, Kumar P, Tandon P (2007) Thermal elastohydrodynamic lubrication characteristics of couple stress fluids in rolling/sliding line contacts. IMechE, J.Engg. Trib vol 221. pp.141–153

    Google Scholar 

  25. Liu X, Cul J, Yang P (2012) Size effect on the behavior of thermal EHL of roller pairs. J. Trib vol 134. pp 011502-1–011502-10

    Google Scholar 

  26. Sadeghi F, Dow TA (1987) Thermal effect in rolling/sliding contacts–II: analysis of thermal effects in fluid films. ASME J Trib 109:512–518

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhaneshwar Prasad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this paper

Cite this paper

Prasad, D., Subrahmanyam, S.V. (2014). Thermo Hydrodynamic Lubrication Characteristics of Power Law Fluids in Rolling/Sliding Line Contact. In: Patel, H., Deheri, G., Patel, H., Mehta, S. (eds) Proceedings of International Conference on Advances in Tribology and Engineering Systems. Lecture Notes in Mechanical Engineering. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1656-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-1656-8_11

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-1655-1

  • Online ISBN: 978-81-322-1656-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics