Skip to main content

Phylogenetic Relationship Among the Indian Pandanus Species

  • Chapter
  • First Online:
Indian Pandanaceae - an overview
  • 408 Accesses

Abstract

Taxonomy is a systematic classification of living organisms, whereas phylogeny is a theoretical model of the sequence of evolutionary divergence of organisms from their common ancestors. Phylogeny is derived from a combination of Greek words: phylon means stem and genesis means origin. It is the study of evolutionary relationships among organisms. Traditionally, morphology, anatomy, physiology, and paleontology are used to determine the phylogeny (Riley 2009). In Pandanaceae, the morphological characters used to describe species are mainly based on fruit. Further, characterization of the species requires a large set of phenotypic data that are difficult to access statistically and are variable due to environmental effects (Sedra et al. 1993, 1996, 1998). There are a number of DNA-based marker systems available for studying phylogeny. Unlike morphological markers, molecular markers are not prone to environmental influences and do portray the genetic relationship between plant groups (Powell 1992; Gottlieb 1977; Tanksley et al. 1989; McCouch and Tanksley 1991).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Avise JC (1986) Mitochondrial DNA and the evolutionary genetics of higher animals. Philos Trans R Soc Lond B Biol Sci 312:325–342

    Article  CAS  PubMed  Google Scholar 

  • Avise JC (1994) The real message from Biosphere 2. Conserv Biol 8:327–329

    Article  Google Scholar 

  • Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC (1987) Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu Rev Ecol Syst 18:489–522

    Google Scholar 

  • Bakker FT, Culham A, Daugherty LC, Gibby M (1999) A trnL-F based phylogeny for species of Pelargonium (Geraniaceae) with small chromosomes. Plant Syst Evol 216:309–324

    Article  CAS  Google Scholar 

  • Bayer RJ, Starr JR (1999) Tribal phylogeny of the Asteraceae based on two non-coding chloroplast sequences, the trnL intron and trnL/trnF intergenic spacer. Ann Missouri Bot Gard 85:242–256

    Article  Google Scholar 

  • Buerki S, Callmander MW, Devey DS, Chappell L, Gallaher T, Munzinger J, Haevermans T, Forest F (2012) Straightening out the screw-pines: a first step in understanding phylogenetic relationships within Pandanaceae. Taxon 61(5):1010–1020

    Google Scholar 

  • Callmander MW, Chassot P, Kupfer P, Lowry PP (2003) Recognition of Martellidendron, a new genus of Pandanaceae, and its bio-geographic implication. Taxon 52:747–762

    Article  Google Scholar 

  • Callmander MW, Lowry PP II, Forest F, Devey DS, Beentje H, Buerki S (2012) Benstonea Callm. & Buerki (Pandanaceae): characterization, circumscription, and distribution of a new genus of screw-pines, with a synopsis of accepted species. Candollea 67(2):323–345

    Google Scholar 

  • Cech TR (1988) Conserved sequences and structures of group I introns: building an active site for RNA catalysis – a review. Gene 73:259–271

    Article  CAS  PubMed  Google Scholar 

  • Chase MW, Soltis DE, Olmstead RG, Morgan D, Les DH, Mishler BD, Duval MR, Price RA, Hills HG, Qiu Y-L, Kron KA, Rettig JH, Conti E, Palmer JD, Manhart JR, Sytsma KJ, Michael HJ, Kress WJ, Karol KG, Clark WD, Hedren M, Gaut BS, Jansen RK, Kim K-J, Wimpee CF, Smith JF, Furnier GR, Strauss SH, Xiang Q-Y, Plunkett GM, Soltis PS, Swensen SM, Williams SE, Gadek PA, Quinn CJ, Eguiarte LE, Golenberg E, Learn GH Jr, Graham SW, Barrett SCH, Dayanandan S, Albert VA (1993) Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann Missouri Bot Gard 80:528–580

    Article  Google Scholar 

  • Chiang TY, Schaal BA, Peng CI (1998) Universal primers for amplification and sequencing a noncoding spacer between the atpB and rbcL genes of chloroplast DNA. Bot Bull Acad Sin 39:245–250

    CAS  Google Scholar 

  • Clegg MT, Zurawski G (1992) Chloroplast DNA and the study of plant phylogeny: present status and future prospects. In: Soltis PS, Soltis DE, Doyle JJ (eds) Molecular systematic of plants. Chapman and Hall, New York

    Google Scholar 

  • Compton JA, Culham A, Jury S (1998) Reclassification of Actaea to include Cimicifuga and Souliea (Ranunculaceae): phylogeny inferred from morphology, nrDNA ITS and cpDNA trnL-F sequence variation. Taxon 47:593–634

    Article  Google Scholar 

  • Doyle J, Doyle J (1987) A rapid DNA isolation procedure for small amount of fresh leaf tissue. Phytochem Bull 5:547–555

    Google Scholar 

  • Efron B (1979) Bootstrap methods: another look at the jackknife. Ann Statist 7:1–26

    Article  Google Scholar 

  • Farris JS (1983) The logical basis of phylogenetic systematics. In: Platnick NI, Funk VA (eds) Advances in cladistics. Columbia University Press, New York, pp 7–36

    Google Scholar 

  • Felsenstein J (1983) Parsimony in systematics: biological and statistical issues. Annu Rev Ecol Syst 14:313–333

    Article  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Felsenstein J (2004) PHYLIP (Phylogeny Inference Package) version 3.68. Department of Genetics, University of Washington, Seattle

    Google Scholar 

  • Fitch WM (1971) Toward defining the course of evolution: minimal change for a specific tree topology. Syst Zool 20:406–416

    Article  Google Scholar 

  • Gottlieb LD (1977) Electrophoretic evidence and plant systematics. Ann Missouri Bot Gard 64:161–180

    Article  Google Scholar 

  • Hao B, Qi J (2003) Prokaryote phylogeny without sequence alignment: from avoidance signature to composition distance. In: Proceedings of the 2003 IEEE bioinformatics conference, IEEE Computer Society Washington, DC, pp 375–385

    Google Scholar 

  • Harrison RG (1989) Animal mitochondrial DNA as a genetic marker in population and evolutionary biology. Trends Ecol Evol 4:6–11

    Article  CAS  PubMed  Google Scholar 

  • Henry AN, Chithra V, Balakrishnan AN (1989) Flora of Tamil Nadu, India, vol III, Series 1, Analysis. Botanical Survey of India, Southern Circle, Coimbatore, 54

    Google Scholar 

  • Hillis DM, Wiens JJ (2000) Molecules versus morphology in systematics: conflicts, artifacts, and misconceptions. In: Wiens JJ (ed) Phylogenetic analysis of morphological data. Smithsonian Institution Press, Washington, DC, pp 1–19

    Google Scholar 

  • Hillis DM, Moritz C, Mable BK (eds) (1996) Molecular systematics. Sinauer Associates, Inc., Sunderland

    Google Scholar 

  • Hilu KW, Borsch T, Muller K, Soltis DE, Soltis PS, Savolainen V, Chase MW, Powell MP, Alice LA, Evans R, Sauquet H, Neinhuis C, Slotta TAB, Rohwer JG, Campbell CS, Chatrou LW (2003) Angiosperm phylogeny based on matK sequence information. Am J Bot 90:1758–1776

    Article  CAS  PubMed  Google Scholar 

  • Holder M, Lewis PO (2003) Phylogeny estimation: traditional and Bayesian approaches. Nat Rev Genet 4:275–284

    Article  CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Ronquist FR, Nielsen R, Bollback JP (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294:2310–2314

    Article  CAS  PubMed  Google Scholar 

  • Johnson LA, Soltis DE (1994) matK DNA-Sequences and phylogenetic reconstruction in Saxifragaceae S-Str. Syst Bot 19:143–156

    Article  Google Scholar 

  • Johnson LA, Soltis DE (1995) Phylogenetic inference in Saxifragaceae sensu stricto and Gilia (Polemoniaceae) using matK sequences. Ann Missouri Bot Gard 82:149–175

    Article  Google Scholar 

  • Källersjö M, Farris JS, Chase MW, Bremer B, Fay MF, Humphries CJ, Petersen G, Seberg OL, Bremer K (1998) Simultaneous parsimony jackknife analysis of 2538 rbcL DNA sequences reveals support for major clades of green plants, land plants, seed plants and flowering plants. Plant Syst Evol 213:259–287

    Article  Google Scholar 

  • Karthikeyan SK, Jain SK, Nayar MP, Sanjappa M (1989) Flora of India, Series 4, Florae Indicae Enumeratio: Monocotyledonae. Botanical Survey of India, Calcutta, pp 177–178

    Google Scholar 

  • Keller J (2001) Pandanaceae. In: Hanelt P, Institute of Plant Genetics and Crop Plant Research (eds) Mansfield’s encyclopedia of agricultural and horticultural crops, vol 5. Springer, Berlin, pp 2816–2824

    Google Scholar 

  • Kim KJ, Jansen RK (1995) ndhF sequence evolution and the major clades in the sunflower family. Proc Natl Acad Sci USA 92:10379–10383

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kranz HD, Huss VAR (1996) Molecular evolution of ferns and allies, and their relationship to seed plants: evidence from complete 18 S rRNA gene sequences. Plant Syst Evol 202:1–11

    Article  CAS  Google Scholar 

  • Kranz HD, Miks D, Siegler M-L, Capesius I, Sensen CHW, Huss VA (1995) The origin of land plants: phylogenetic relationships between Charophytes, Bryophytes, and vascular plants inferred from complete small subunit ribosomal RNA gene sequences. J Mol Evol 41:74–84

    Article  CAS  PubMed  Google Scholar 

  • Larget B, Simon DL (1999) Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Mol Biol Evol 16:750–759

    Article  CAS  Google Scholar 

  • Manhart JR (1994) Phylogenetic analysis of green plant rbcL sequences. Mol Phyl Evol 3:114–127

    Article  CAS  Google Scholar 

  • Mauro DS, Agorreta A (2010) Molecular systematics: a synthesis of the common methods and the state of knowledge. Cell Mol Biol Lett 15:311–341

    Article  Google Scholar 

  • McCouch SR, Tanksley SD (1991) Development and use of restriction fragment length polymorphism in rice breeding and genetics. In: Khush GS, Toenniessen GH (eds) Rice biotechnology. CAB International and IRRI, Wallingford/Oxon/Manila, pp 109–133

    Google Scholar 

  • McDade LA, Moody ML (1999) Phylogenetic relationships among Acanthaceae: evidence from non-coding trnL-trnF chloroplast DNA sequences. Am J Bot 86:70–80

    Article  CAS  PubMed  Google Scholar 

  • Michel F, Dujon B (1983) Conservation of RNA secondary structures in two intron families including mitochondrial, chloroplast and nuclear-encoded members. EMBO J 2:33–38

    CAS  PubMed  Google Scholar 

  • Moritz C, Dowling TE, Brown WM (1987) Evolution of animal mitochondrial DNA relevance for population biology and systematics. Annu Rev Ecol Syst 18:269–292

    Article  Google Scholar 

  • National Center for Biotechnology Information. http://www.ncbi.nlm.nih.gov. Access on 26 Mar 2012

  • National Center for Biotechnology Information. http://www.ncbi.nlm.nih.gov/GenBank. Access on 26 Mar 2012

  • Nickrent DL, Soltis DE (1995) A comparison of angiosperm phylogenies from nuclear 18 s rDNA and rbcL sequences. Ann Missouri Bot Gard 82:208–234

    Article  Google Scholar 

  • Olmstead RG, Reeves PA (1995) Evidence for the polyphyly of the Scrophulariaceae based on chloroplast rbcL and ndhF sequences. Ann Missouri Bot Gard 82:176–193

    Article  Google Scholar 

  • Palmer JD (1985a) Comparative organization of chloroplast genomes. Annual Rev Genet 19:325–354

    Article  CAS  Google Scholar 

  • Palmer JD (1985b) Chloroplast DNA and molecular phylogeny. Bioessays 2:263–267

    Article  CAS  Google Scholar 

  • Palmer JD (1992) Mitochondrial DNA in plant systematics: applications and limitations. In: Soltis PS, Soltis DE, Doyle JJ (eds) Molecular systematics of plants. Chapman & Hall, New York, pp 36–49

    Chapter  Google Scholar 

  • Pirie MD, Vargas MPB, Botermans M, Bakker FT, Chatrou LW (2007) Ancient paralogy in the cpDNA trnL–F region in Annonaceae: implications for plant molecular systematics. Am J Bot 94:1003–1016

    Article  PubMed  Google Scholar 

  • Powell W (1992) Plant genomes, gene markers and linkage maps. In: Moss JP (ed) Biotechnology and crop improvement in Asia. ICRISAT, Hyderabad, pp 297–322

    Google Scholar 

  • Qiu YQ, Palmer JD (1998) Phylogeny of early land plants: insights from genes and genomes. Trends Plant Sci 4:26–30

    Article  Google Scholar 

  • Quandt D, Müller K, Stech M, Frahm J-P, Frey W, Hilu KW, Borsch T (2004) Molecular evolution of the chloroplast trnL-F region in land plants. Monogr Syst Bot Missouri Bot Gard 98:13–37

    Google Scholar 

  • Rambaut A (2006) Figtree version 1.0, Institute of Evolutionary Biology, University of Edinburgh, UK. Available on http://tree.bio.ed.ac.uk/software/figtree/

  • Rannala B, Yang Z (1996) Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J Mol Evol 43:304–311

    Article  CAS  PubMed  Google Scholar 

  • Reijmers TH, Wehrens R, Daeyaert FD, Lewi PJ, Buydens LM (1999) Using genetic algorithms for the construction of phylogenetic trees: application to G-protein coupled receptor sequences. Biosystems 49:31–43

    Article  CAS  PubMed  Google Scholar 

  • Richard D, Olivier G (2002) Fast and accurate phylogeny reconstruction algorithm based on the minimum-evolution principle. WABI2002, LNCS2452, pp 357–374

    Google Scholar 

  • Riley MC (2009) Significant pattern discovery in gene location and phylogeny. Ph.D. dissertation, University of Wales

    Google Scholar 

  • Robertson B, Myers G, Howard C, Brettin T, Bukh J, Gaschen B, Gojobori T, Maertens G, Mizokami M, Nainan O, Netesov S, Nishioka K, Shin-i T, Simmonds P, Smith D, Stuyver L, Weiner A (1998) Classification, nomenclature, and database development for hepatitis C virus (HCV) and related viruses: proposals for standardization. Arch Virol 143(12):2493–2503

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    CAS  PubMed  Google Scholar 

  • Savolainen V, Chase MW, Hoot SB, Morton CM, Soltis DE, Bayer C, Fay MF, De Bruijn AY, Sullivan S, Qiu YL (2000) Phylogenetics of flowering plants based on combined analysis of plastid atpB and rbcL gene sequences. Syst Biol 49:306–362

    Article  CAS  PubMed  Google Scholar 

  • Sedra MH, Filali HEL, Frira D (1993) Observations sur quelques caracteristiques phenotypiques et agronomiques du fruit des varieties et clones du palmier dattier selectionnes. Al Awamia 82:105–120

    Google Scholar 

  • Sedra MH, Filali HEL, Benzine A, Allaoui M, Nour S, Boussak Z (1996) La palmeraie dattiere marocaine: evaluation du patrimonie phenicicole. Fruits 1:247–259

    Google Scholar 

  • Sedra MH, Lashermes P, Trouslot P, Combes M, Hamon S (1998) identification and genetic diversity analysis of date palm (Phoenix dactylifera L.) varieties of Morocco using RAPD markers. Euphytica 103:75–82

    Article  CAS  Google Scholar 

  • Sharma DB, Karthikeyan S, Singh NP (1996) Flora of Maharashtra state, Monocotyledons. Botanical Survey of India, Calcutta, 206

    Google Scholar 

  • Shu TLDS (2004) Freycinetia Gaudichaud. Ann Sci Nat (Paris) 3:509. 1824. In: Ke LDS, Kun S, DeFilipps RA (eds) Flora of China, vol XXIII. Science press, Beijing, pp 127–128

    Google Scholar 

  • Soltis PS, Soltis DE (1990) Evolution of inbreeding and outcrossing in ferns and fern–allies. Plant Species Biol 5:1–11

    Article  Google Scholar 

  • Soltis DE, Soltis PS (1997) Phylogenetic relationships in Saxifragaceae sensu lato: a comparison of topologies based on 18 S rDNA and rbcL sequences. Am J Bot 84:504–522

    Article  CAS  PubMed  Google Scholar 

  • Soltis DE, Soltis PS, Clegg MT, Durbin M (1990) rbcL sequence divergence and phylogenetic-relationships in Saxifragaceae sensu-lato. Proc Natl Acad Sci USA 87:4640–4644

    Article  CAS  PubMed  Google Scholar 

  • Soltis DE, Morgan DR, Grable A, Soltis PS, Kuzoff R (1993) Molecular systematics of Saxifragaceae-sensu-stricto. Am J Bot 80:1056–1081

    Article  CAS  Google Scholar 

  • Soltis DE, Kuzoff RK, Conti E, Gornall R, Ferguson K (1996) matK and rbcL gene sequence data indicate that Saxifraga (Saxifragaceae) is polyphyletic. Am J Bot 83:371–382

    Article  CAS  Google Scholar 

  • Soltis DE, Soltis PS, Nickrent DL, Johnson LA, Hahn WJ, Hoot SB, Sweere JA, Kuzoff RK, Kron KA, Chase MW, Swensen SM, Zimmer EA, Chaw SM, Gillespie LJ, Kress WJ, Sytsma KJ (1997) Angiosperm phylogeny inferred from 18 S ribosomal DNA sequences. Ann Missouri Bot Gard 84:1–49

    Article  Google Scholar 

  • Soltis ED, Soltis PS (2000) Contribution of plant molecular systematics to studies of molecular evolution. Plant Mol Biol 42:45–75

    Article  CAS  PubMed  Google Scholar 

  • Soltis DE, Kuzoff RK, Mort ME, Zanis M, Fishbein M, Hufford L, Koontz J, Arroyo MK (2001a) Elucidating deep-level phylogenetic relationships in Saxifragaceae using sequences for six chloroplastic and nuclear DNA regions. Ann Missouri Bot Gard 88:669–693

    Article  Google Scholar 

  • Soltis DE, Tago-Nakazawa M, Xiang QY, Kawano S, Murata J, Wakabayashi M, Hibsch-Jetter C (2001b) Phylogenetic relationships and evolution in Chrysosplenium (Saxifragaceae) based on matK sequence data. Am J Bot 88:883–893

    Article  CAS  PubMed  Google Scholar 

  • St. John H (1972) The Indian species of Pandanus (section Rykia). Bot Mag Tokyo 85:241–262

    Article  Google Scholar 

  • Stone BC (1974) Towards an improved infrageneric classification in Pandanus (Pandanaceae). Bot Jahrb Syst 94:459–540

    Google Scholar 

  • Stone BC (1976) Pandanaceae. In: Saldanha CJ, Nicolson DH (eds) Flora of Hassan district Karnataka, India. Amerind Pub. Co, Calcutta, pp 777–781

    Google Scholar 

  • Stone BC (1981) Pandanaceae. In: Dassanayake MD, Fosberg FR (eds) A revised hand book to the flora of cylon, vol III. Oxford and IBH Pub. Co., New Delhi, pp 293–320

    Google Scholar 

  • Studier JA, Keppler KJ (1988) A note on the neighbor-joining algorithm of Saitou and Nei. Mol Biol Evol 5:729–731

    CAS  PubMed  Google Scholar 

  • Swofford DL, Olse GJ, Waddell PJ, Hillis DM (1996) Phylogenetic inference. In: Hillis DM, Moritz C, Mable BK (eds) Molecular systematics. Sinnauer Associates, Sunderland, pp 407–514

    Google Scholar 

  • Taberlet P, Gielly L, Patou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109

    Article  CAS  PubMed  Google Scholar 

  • Tanksley SD, Young ND, Paterson AH, Bonierbale MW (1989) RFLP mapping in plant breeding: new tools for an old science. Bio/Technology 7:257–264

    Article  CAS  Google Scholar 

  • Whelan S, Liò P, Goldman N (2001) Molecular phylogenetics: state-of-the-art methods for looking into the past. Trends Genet 17:262–272

    Article  CAS  PubMed  Google Scholar 

  • White T, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelfand D, Sninsky J, White T (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 315–322

    Google Scholar 

  • Witt CC (2004) Rates of molecular evolution and their application to neotropical avian biogeography. Ph.D. dissertation, Louisiana State University

    Google Scholar 

  • Wolfe KH (1991) Protein coding gene in chloroplast DNA: compilation of nucleotide sequences, data base entries and rates of molecular evolution. In: Vasil K (ed) Cell culture and somatic cell genetics of plants, vol 7BI. Academic, San Diego, pp 467–482

    Google Scholar 

  • Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substation vary greatly among plant mitochondrial, chloroplast and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058

    Article  CAS  PubMed  Google Scholar 

  • Wolfe KH, Sharp PM, Li WH (1989) Rates of synonymous substitution in plant nuclear genes. J Mol Evol 29:208–211

    Article  CAS  Google Scholar 

  • Wu X, Wan XF, Xu D, Lin GH (2005) Whole genome phylogeny based on clustered signature string composition. In: Posters in 2005 IEEE computational systems bioinformatics conference (CSB2005), Stanford University, pp 53–54

    Google Scholar 

  • Xiaomeng W, Xiufeng W, Gang W, Dong X, Guohui L (2005) Phylogenetic analysis using complete signature information of whole genomes and clustered Neighbor-Joining method. Int J Bioinform Res Appl 2:219–248

    Google Scholar 

  • Yoganarasimhan SN, Subramanyam K, Razi BA (1981) Flora of Chikmagalur district, Karnataka. International Book Distributors, Dehra Dun

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer India

About this chapter

Cite this chapter

Nadaf, A., Zanan, R. (2012). Phylogenetic Relationship Among the Indian Pandanus Species. In: Indian Pandanaceae - an overview. Springer, New Delhi. https://doi.org/10.1007/978-81-322-0753-5_6

Download citation

Publish with us

Policies and ethics