Skip to main content

Fluid Shear Stress and Vascular Endothelial Cell Biomechanics

  • Conference paper
Clinical Biomechanics and Related Research

Summary

Vascular endothelium is now recognized as a very active cell layer that plays an important role in maintaining the vessel wall functions. The endothelial cells (ECs) have a variety of proliferative, synthetic, secretory, and self-adaptive capabilities that regulate vascular tonus, morphology, or adhesiveness by interacting with other cells such as vascular smooth muscle cells, platelets and white cells. Recent evidence suggests that these functions are all affected by fluid shear stress on the endothelial wall, which is a rhcological force shearing the luminal surface of the blood vessel when blood flows over it. Wall shear stress is a regulating factor of adaptive vessel growth and angiogenesis, and might be a local risk factor in the pathogenesis of atherosclerosis. Shear stress also modulates the production of vasoactive substances such as endothelium-derived relaxing factor, prostacyclin, histamine, and endothelin, and regulates macromolecule permeability and endocytosis. More recent studies have shown that shear stress exerts an influence on the expression of mRNA of various EC-producing substances such as tissue plasminogen activator mRNA. These facts suggest that ECs have mechanoreceptors to detect changes in shear stress, the signal of which is transmitted to intracellular organelles. It is established that the intracellular Ca2+ response is involved in this shear-sensing mechanism of EC as the second messenger of the internal signaling system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ando J, Kamiya A (1993) Blood flow and vascular endothelial cell function. Front Med Biol Eng 5:245–264

    PubMed  CAS  Google Scholar 

  2. Davies PF, Tripatchi S (1993) Mechanical stress mechanism and the cell: an endothelial paradigm. Circ Res 72:239–245

    Article  PubMed  CAS  Google Scholar 

  3. Suwa N, Takahashi T (1971) Morphological and morphometrical analysis of circulation in hypertension and ischemic kidney. Urban and Schwarzenberg, München

    Google Scholar 

  4. Hutchins GM, Milner MM, Boitnott JK (1976) Vessel caliber and branch angle of human coronary arterial branch-points. Circ Res 38:572–576

    Article  PubMed  CAS  Google Scholar 

  5. Thoma R (1911) Über die Histomechanik des Gefäßsystems und die Pathogenese der Angiosklerose. Pathol Anat Physiol 204:1–74

    Google Scholar 

  6. Rodbard S (1959) Physical forces and the vascular lining. Ann Int Med 50:1339–1351

    PubMed  CAS  Google Scholar 

  7. Kamiya A, Togawa T (1980) Adaptive regulation of wall shear stress to flow change in the canine carotid artery. Am J Physiol 239:H14-H21

    PubMed  CAS  Google Scholar 

  8. Guyton JR, Hartley CJ (1985) Flow restriction of one carotid artery in juvenile rats inhibits growth of arterial diameter. Am J Physiol 17:H540-H546

    Google Scholar 

  9. Langille BL, O’Donnell F (1986) Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent. Science 231:405–407

    Article  PubMed  CAS  Google Scholar 

  10. Zarins CK, Zatina MA, Giddens DP, Ku DN, Glagov S (1987) Shear regulation of arterial lumen diameter in experimental atherogenesis. J Vase Surg 5:413–420

    CAS  Google Scholar 

  11. Hudlicka O, Brown M, Egginton S (1992) Angiogenesis in skeletal and cardiac muscle. Physiol Rev 72(2):369–417

    PubMed  CAS  Google Scholar 

  12. Wang DW, Prewitt RL (1991) Microvascular development during normal growth and reduced blood flow: introduction of a new model. Am J Physiol 260:H1966–H1972

    PubMed  CAS  Google Scholar 

  13. Ando J, Nomura H, Kamiya A (1987) The effect of fluid shear stress on the migration and proliferation of cultured endothelial cells. Micro vase Res 33:62–70

    Article  CAS  Google Scholar 

  14. Ando J, Komatsuda T, Ishikawa C, Kamiya A (1990) Fluid shear stress enhanced DNA synthesis in cultured endothelial cells during repair of mechanical denudation. Biorheology 27:675–684

    PubMed  CAS  Google Scholar 

  15. Masuda M, Fujiwara K (1991) Morphological responses of single endothelial cells exposed to physiological levels of fluid shear stress. Med Biol Eng Comput 29[suppl]:268

    Google Scholar 

  16. Eskin SG, Sybers HD, O’Bannon W, Navarro LT (1982) Performance of tissue cultured endothelial cells in a mock circulatory loop. Artery 10:159–171

    PubMed  CAS  Google Scholar 

  17. Dewey CF Jr (1984) Effects of fluid flow on living vascular cells. J Biomech Eng 106:31–35

    Article  PubMed  Google Scholar 

  18. Davies PF, Remuzzi A, Gordon EJ, Dewey CF Jr, Gimbrone MA Jr (1986) Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proc Natl Acad Sci USA 83:2114–2117

    Article  PubMed  CAS  Google Scholar 

  19. Masuda H, Kawamura K, Tohda K, Shozawa T, Sageshima M, Kamiya A (1989) Increase in endothelial cell density before artery enlargement in flow-loaded canine carotid artery. Arteriosclerosis 9:812–823

    Article  PubMed  CAS  Google Scholar 

  20. Sumpio BE, Banes AJ, Levin LG, Johnson G Jr (1987) Mechanical stress stimulates aortic endothelial cells to proliferate. J Vase Surg 6:252–256

    CAS  Google Scholar 

  21. Flaherty JT, Pierce JE, Ferrans VJ, Patel DJ, Tucker WK, Fry DL (1972) Endothelial nuclear patterns in the canine arterial tree with particular reference to hemodynamic events. Circ Res 30:23–33

    Article  PubMed  CAS  Google Scholar 

  22. Dewey CF Jr, Bussolari SR, Gimbrone MA Jr, Davies PF (1981) The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Eng 103:177–184

    Article  PubMed  Google Scholar 

  23. Wong AJ, Pollard TD, Herman IM (1983) Actin filament stress fibers in vascular endothelial cells in vivo. Science 219:867–869

    Article  PubMed  CAS  Google Scholar 

  24. White GE, Fujiwara K (1986) Expression and intracellular distribution of stress fibers in aortic endothelium. J Cell Biol 103:63–70

    Article  PubMed  CAS  Google Scholar 

  25. Masuda H, Shozawa T, Hosoda S, Kanda M, Kamiya A (1985) Cytoplasmic microfilaments in endothelial cells of flow loaded canine carotid arteries. Heart Vessels 1:65–69

    Article  PubMed  CAS  Google Scholar 

  26. Kim DW, Langille BL, Wong MKK, Gotlieb AI (1989) Patterns of endothehal microfilament distribution in the rabbit aorta in situ. Circ Res 64:21–31

    Article  PubMed  CAS  Google Scholar 

  27. Kim DW, Gotlieb AI, Langille BL (1989) In vivo modulation of endothelial F-actin microfilaments by experimental alterations in shear stress. Arteriosclerosis 9: 439–445

    Article  PubMed  CAS  Google Scholar 

  28. Franke RP, Gräfe M, Schnittler H, Seiffge D, Mittermayer C, Drenckhahn D (1984) Induction of human vascular endothelial stress fibres by fluid shear stress. Nature 307:648–649

    Article  PubMed  CAS  Google Scholar 

  29. Weckezak AR, Viggers RF, Sauvage LR (1985) Fibronectin and F-actin redistribution in cultured endothelial cells exposed to shear stress. Lab Invest 53(6): 639–647

    Google Scholar 

  30. Wechezak AR, Wight TN, Viggers RF, Sauvage LR (1989) Endothelial adherence under shear stress is dependent upon microfilament reorganization. J Cell Physiol 139:136–146

    Article  PubMed  CAS  Google Scholar 

  31. Rosen LA, Hollis TM, Sharma MG (1974) Alterations in bovine endothelial histidine decarboxylase activity following exposure to shear stresses. Exp Mol Pathol 20:329–343

    Article  PubMed  CAS  Google Scholar 

  32. DeForrest JM, Hollis TM (1978) Shear stress and aortic histamine synthesis. Am J Physiol 234:H701-H705

    Google Scholar 

  33. Reeves JT, Grondelle AV, Voelkel NF, Walker B, Lindenfeld J, Worthen S, Mathias M (1983) Prostacyclin production and lung endothelial cell shear stress. In: Hypoxia, exercise, and altitude: proceedings of the third Banff international hypoxia symposium. Liss, New York, pp 125–131

    Google Scholar 

  34. Frangos JA, Eskin SG, Mclntire LV, Ives CL (1985) Flow effects on prostacycHn production by cultured human endothelial cells. Science 227:1477–1479

    Article  PubMed  CAS  Google Scholar 

  35. Grabowski EF, Jaffe EA, Weksler BB (1985) ProstacycHn production by cultured endothehal cell monolayers exposed to step increases in shear stress. J Lab Clin Med 105:36–43

    PubMed  CAS  Google Scholar 

  36. Holtz J, Forstermann U, Pohl U, Giesler M, Bassenge E (1984) Flow-dependent, endothelium-mediated dilation of epicardial coronary arteries in conscious dogs: effects of cyclooxygenase inhibition. J Cardiovasc Pharmacol 6:1161–1169

    PubMed  CAS  Google Scholar 

  37. Rubanyi GM, Romero JC, Vanhoutte PM (1986) Flow-induced release of endothelium-derived relaxing factor. Am J Physiol 250:H1145-H1149

    PubMed  CAS  Google Scholar 

  38. Miller VM, Vanhoutte PM (1988) Enhanced release of endothelium-derived factor(s) by chronic increases in blood flow. Am J Physiol 255:H446-H451

    PubMed  CAS  Google Scholar 

  39. Cooke JP, Stamler J, Andon N, Davies PF, McKinley G, Loscalzo J (1990) Flow stimulates endothelial cells to release a nitrovasodilator that is potentiated by reduced thiol. Am J Physiol 259:H804-H812

    PubMed  CAS  Google Scholar 

  40. Korenaga R, Ando J, Tsuboi H, Yang W, Toyo-oka T, Kamiya A (1994) Laminar flow stimulates ATP- and shear stress-dependent nitric oxide production in cultured bovine endothehal cells. Biochem Biophys Res Commun 198:213–219

    Article  PubMed  CAS  Google Scholar 

  41. Yoshizumi M, Kurihara H, Sugiyama T, Takaku F, Yanagisawa M, Masaki T, Yazaki Y (1989) Hemodynamic shear stress stimulates endothelin production by cultured endothelial cells. Biochem Biophys Res Commun 161:859–864

    Article  PubMed  CAS  Google Scholar 

  42. Milner P, Bodin P, Loesch A, Burnstock G (1990) Rapid release of endothelin and ATP from isolated aortic endothelial cells exposed to increased flow. Biochem Biophys Res Commun 170(2):649–656

    Article  PubMed  CAS  Google Scholar 

  43. Sharefkin JB, Diamond SL, Eskin SG, Mclntire LV, Dieffenbach CW (1991) Fluid flow decreases preproendothelin mRNA levels and suppresses endothelin-1 peptide release in cultured human endothehal cells. J Vase Surg 14:1–9

    Article  CAS  Google Scholar 

  44. Diamond SL, Eskin SG, Mclntire LV (1989) Fluid flow stimulates tissue plasminogen activator secretion by cultured human endothelial cells. Science 243: 1483–1485

    Article  PubMed  CAS  Google Scholar 

  45. Diamond SL, Sharefkin JB, Dieffenbach C, Frasier-Scott K, Mclntire LV, Eskin SG (1990) Tissue plasminogen activator messenger RNA levels increase in cultured human endothelial cells exposed to laminar shear stress. J Cell Physiol 143:364–371

    Article  PubMed  CAS  Google Scholar 

  46. Hsieh H-J, Li N-Q, Frangos JA (1991) Shear stress increases endothehal platelet-derived growth factor mRNA levels. Am J Physiol 260:H642-H646

    PubMed  CAS  Google Scholar 

  47. Ono O, Ando J, Kamiya A, Kuboki Y, Yasuda H (1991) Flow effects on cultured vascular endothelial and smooth muscle cell functions. Cell Struct Funct 16:365–374

    Article  PubMed  CAS  Google Scholar 

  48. Gupte A, Frangos JA (1990) Effects of flow on the synthesis and release of fibronectin by endothehal cells. In Vitro Cell Dev Biol 26:57–60

    Article  CAS  Google Scholar 

  49. Grimm J, Keller R, Groot PG (1988) Laminar flow induced cell polarity and leads to rearrangement of proteoglycan metabolism in endothelial cells. Thromb Haemostasis 60(3):437–441

    CAS  Google Scholar 

  50. Ohtsuka A, Ando J, Korenaga R, Kamiya A, Toyama-Sorimachi N, Miyasaka M (1993) The effect of flow on the expression of vascular adhesion molecule-1 by cultured mouse endothehal cells. Biophys Biochem Res Commun 193:303–310

    Article  CAS  Google Scholar 

  51. Fry DL (1968) Acute vascular endothehal changes associated with increased blood velocity gradients. Circ Res 22:165–169

    Article  PubMed  CAS  Google Scholar 

  52. Jo H, Dull RO, Hollis TM, Tarbell JM (1991) Endothehal albumin permeability is shear dependent, time dependent, and reversible. Am J Physiol 260:H1992-H1996

    PubMed  CAS  Google Scholar 

  53. Shibata M, Kamiya A (1992) Blood flow dependence of local capillary permeability of Cr-EDTA in the rabbit skeletal muscle. Jpn J Physiol 42:631–639

    Article  PubMed  CAS  Google Scholar 

  54. Davies PF, Dewey CF Jr, Bussolari SR, Gordon EJ, Gimbrone MA Jr (1984) Influence of hemodynamic forces on vascular endothelial function: in vitro studies of shear stress and pinocytosis in bovine aortic cells. J Clin Invest 73:1121–1129

    Article  PubMed  CAS  Google Scholar 

  55. Sprague EA, Steinbach BL, Nerem RM, Schwartz CJ (1987) Influence of a laminar steady-state fluid-imposed wall shear stress on the binding, internalization, and degradation of low-density lipoproteins by cultured arterial endothehum. Circulation 76:648–656

    Article  PubMed  CAS  Google Scholar 

  56. Worthen GS, Smedly LA, Tonnesen MG, Elhs D, Voelkel NF, Reeves JT, Henson PM (1987) Effects of shear stress on adhesive interaction between neutrophils and cultured endothehal cells. J Appl Physiol 63:2031–2041

    PubMed  CAS  Google Scholar 

  57. Sato M, Levesque MJ, Nerem RM (1987) Micropipette aspiration of cultured bovine aortic endothelial cells exposed to shear stress. Arteriosclerosis 7:276–286

    Article  PubMed  CAS  Google Scholar 

  58. Ando J, Komatsuda T, Kamiya A (1988) Cytoplasmic calcium response to fluid shear stress in cultured vascular endothelial cells. In Vitro Cell Dev Biol 24: 821–877

    Article  Google Scholar 

  59. Nollert MU, Eskin SG, Mclntire LV (1990) Shear stress increases inositol trisphosphate levels in human endothehal cells. Biochem Biophys Res Commun 170(1): 281–287

    Article  PubMed  CAS  Google Scholar 

  60. Olesen S-P, Clapham DE, Davies PF (1988) Haemodynamic shear stress activates a K+ current in vascular endothehal cells. Nature 331:168–331

    Article  PubMed  CAS  Google Scholar 

  61. Nakache M, Gaub HE (1988) Hydrodynamic hyperpolarization of endothelial cells. Proc Natl Acad Sci USA 85:1841–1843

    Article  PubMed  CAS  Google Scholar 

  62. Ando J, Ohtsuka A, Korenaga R, Kamiya A (1991) Effect of extracellular ATP level on flow-induced Ca2+ response in cultured vascular endothelial cells. Biochem Biophys Res Commun 179:1192–1199

    Article  PubMed  CAS  Google Scholar 

  63. Nollert MU, Diamond SL, Mclntire LV (1991) Hydrodynamic shear stress and mass transport modulation of endothelial cell metabolism. Biotechnol Bioeng 38: 588–602

    Article  PubMed  CAS  Google Scholar 

  64. Mo M, Eskin SG, Schilling WP (1991) Flow-induced changes in Ca2+ signalling of vascular endothelial cells: effect of shear stress and ATP. Am J Physiol 260: H1698-H1707

    PubMed  CAS  Google Scholar 

  65. Dull RO, Davies PF (1991) Flow modulation of agonist (ATP)-response (Ca2+ ) coupHng in vascular endothelial cells. Am J Physiol 261:H149-H154

    PubMed  CAS  Google Scholar 

  66. Luckhoff A, Busse R (1986) Increased free calcium in endothelial cells under stimulation with adenine nucleotides. J Cell Physiol 126:414–420

    Article  PubMed  CAS  Google Scholar 

  67. Caro CC, Nerem RM (1973) Transport of 14C-4-cholesterol between serum and wall in the perfused dog common carotid artery. Circ Res 32:187–205

    Article  PubMed  CAS  Google Scholar 

  68. Ando J, Ohtsuka A, Korenaga R, Kawamura T, Kamiya A (1993) Wall shear stress rather than shear rate regulates cytoplasmic Ca2+ responses to flow in vascular endothelial cells. Biochem Biophys Res Commun 190:716–723

    Article  PubMed  CAS  Google Scholar 

  69. Ando J, Ohtsuka A, Korenaga R, Kamiya A (1992) Intracellular calcium response to mechanical shearing force in cultured vascular endothelial cells. In Vitro Cell Dev Biol 28:152

    Google Scholar 

  70. Lansman JB, Hallam TJ, Rink TJ (1987) Single stretch-activated ion channels in vascular endothelial cells as mechanotransducers? Nature 325:811–813

    Article  PubMed  CAS  Google Scholar 

  71. Letsou GV, Rosales O, Maitz S, Vogt A, Sumpio BE (1990) Stimulation of adenylate cyclase activity in cultured endothelial cells subjects to cyclic stretch. J Cardiovasc Surg 31:634–639

    CAS  Google Scholar 

  72. Ingber D (1991) Integrins as mechanochemical transducers. Curr Opin Cell Biol 3:841–848

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Tokyo

About this paper

Cite this paper

Kamiya, A., Ando, J. (1994). Fluid Shear Stress and Vascular Endothelial Cell Biomechanics. In: Hirasawa, Y., Sledge, C.B., Woo, S.LY. (eds) Clinical Biomechanics and Related Research. Springer, Tokyo. https://doi.org/10.1007/978-4-431-66859-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-66859-6_23

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-66861-9

  • Online ISBN: 978-4-431-66859-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics