Skip to main content

Chalcogenide Nanosheets: Optical Signatures of Many-Body Effects and Electronic Band Structure

  • Chapter
  • First Online:
Inorganic Nanosheets and Nanosheet-Based Materials

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Layered chalcogenide materials exhibit a wide range of physical properties associated with their quasi-2D nature and have been studied extensively since the second half of the twentieth century. Following the discovery of graphene, the ability to isolate individual monolayer of these material has recently opened up numerous avenues for probing various physical effects in the ultimate 2D confinement limit. Monolayers of group 6 transition metal dichalcogenides are an attractive platform for studying many-body effects, non-linear optics, and valley physics. Along with other emerging 2D chalcogenides, they offer unique opportunities for realizing novel devices and their technological implementations. Here we review the fundamental properties of various semiconducting chalcogenide nanosheets and their heterostructures with emphasis on the electronic structure and optical properties of Mo- and W-basedĀ dichalcogenides (MoS2, MoSe2, MoTe2, WS2, WSe2). We discuss the current understanding on the the layer-dependent energy dispersion and and its optical signatures in these material systems. We further discuss the strong excitonic effects and review recent experimental efforts in estimating exciton binding energy using various optical and opto-electrical approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1D:

One-dimensional

2D:

Two-dimensional

2P-PLE:

Two-photon photoluminescence excitation

ADF:

Annular dark field

ALD:

Atomic layer deposition

ARPES:

Angle-resolved photoemission spectroscopy

BLG:

Bilayer graphene

CBM:

Conduction band minimum

CDW:

Charge density wave

CL:

Cathodoluminescence

CVD:

Chemical vapor deposition

CVT:

Chemical vapor transport

DFT:

Density functional theory

DoS:

Density of state

dR:

Differential reflectance

HOPG:

Highly oriented pyrolytic graphite

jDoS:

Joint density of states

MBE:

Molecular beam epitaxy

MX2 :

Metal atoms (M) and chalcogen atoms (X)

IR:

Infra-red

UV:

Ultra-violet

PL:

Photoluminescence

PLE:

Photoluminescence excitation spectroscopy

SHG:

Second harmonic generation spectroscopy

STEM:

Scanning transmission electron microscopy

STM:

Scanning tunneling microscopy

STS:

Scanning tunneling spectroscopy

TA:

Transient absorption

TMD:

Transition metal dichalcogenide

VBM:

Valence band maximum

XPS:

X-ray photoelectron spectroscopy

References

  1. Wilson AD, Yoffe JA (1969) The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv Phys 18:193ā€“335

    ArticleĀ  CASĀ  Google ScholarĀ 

  2. Murray RB, Bromley RA, Yoffe AD (1972) The band structures of some transition metal dichalcogenides. II. Group IVA; octahedral coordination. J Phys C Sol Stat Phys 5:746

    Google ScholarĀ 

  3. Bromley RA, Murray RB, Yoffe AD (1972) The band structures of some transition metal dichalcogenides. III. Group VIA: trigonal prism materials. J Phys C Sol Stat Phys 5:759

    Google ScholarĀ 

  4. Liang WY (1973) Optical anisotropy in layer compounds. J Phys C Solid Stat Phys 6:551ā€“565

    ArticleĀ  CASĀ  Google ScholarĀ 

  5. LĆ©vy F (1979) Physics and chemistry of materials with layered structures: intercalated layered materials. Reidel, Dordrecht

    BookĀ  Google ScholarĀ 

  6. Somoano RB, Hadek V, Rembaum A (1973) Alkali metal intercalates of molybdenum disulfide. J Chem Phys 58:697

    ArticleĀ  CASĀ  Google ScholarĀ 

  7. Woollam JA, Somoano RB (1976) Superconducting critical fields of alkali and alkaline-earth intercalates of MoS2. Phys Rev B 13:3843

    ArticleĀ  CASĀ  Google ScholarĀ 

  8. Hasan MZ, Kane CL (2010) Topological insulators. Rev Mod Phys 82:3045

    ArticleĀ  CASĀ  Google ScholarĀ 

  9. Butler SZ et al (2013) Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7:2898ā€“2926

    ArticleĀ  CASĀ  Google ScholarĀ 

  10. Kasowski RV (1973) Band structure of MoS2 and NbS2. Phys Rev Lett 30:1175

    Google ScholarĀ 

  11. LebĆØgue S, Eriksson O (2009) Electronic structure of two-dimensional crystals from ab initio theory. Phys Rev B 79:115409

    Google ScholarĀ 

  12. Hu KH et al (2009) Tribological properties of molybdenum disulfide nanosheets by monolayer restacking process as additive in liquid paraffin. Tribol Int 42:33ā€“39

    ArticleĀ  CASĀ  Google ScholarĀ 

  13. Lipatov A et al (2015) Few-layered titanium trisulfide (TiS3) field-effect transistors. Nanoscale 7:12291ā€“12296

    ArticleĀ  CASĀ  Google ScholarĀ 

  14. Zolyomi V, Drummond ND, Falā€™ko VI (2003) Band structure and optical transitions in atomic layers of hexagonal gallium chalcogenides. Phys Rev B 87:195403

    Google ScholarĀ 

  15. Malone BD, Kaxiras E (2013) Quasiparticle band structures and interface physics of SnS and GeS. Phys Rev B 87:245312

    ArticleĀ  CASĀ  Google ScholarĀ 

  16. Buscema M et al (2015) Photocurrent generation with two-dimensional van der Waals semiconductors. Chem Soc Rev 44:3691ā€“3718

    ArticleĀ  CASĀ  Google ScholarĀ 

  17. Gomes LC, Carvalho A (2015) Phosphorene analogues: isoelectronic two-dimensional group-IV monochalcogenides with orthorhombic structure. Phys Rev B 92:085406

    ArticleĀ  CASĀ  Google ScholarĀ 

  18. Consadori F, Frindt RF (1970) Crystal size effects on the exciton absorption spectrum of WSe2. Phys Rev B 2:4893ā€“4896

    ArticleĀ  Google ScholarĀ 

  19. Novoselov KS et al (2005) Electric field effect in atomically thin carbon films. Science 306:666

    ArticleĀ  CASĀ  Google ScholarĀ 

  20. Chhowalla M et al (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5:263ā€“275

    ArticleĀ  Google ScholarĀ 

  21. Wang QH et al (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7:699ā€“712

    ArticleĀ  CASĀ  Google ScholarĀ 

  22. Bhimanapati GR et al (2015) Recent advances in two-dimensional materials beyond graphene. ACS Nano 9:11509ā€“11539

    ArticleĀ  CASĀ  Google ScholarĀ 

  23. Gupta A, Sakthivel T, Seal S (2015) Recent development in 2D materials beyond graphene. Prog Mat Sci 73:44ā€“126

    ArticleĀ  CASĀ  Google ScholarĀ 

  24. Splendiani A et al (2010) Emerging photoluminescence in monolayer MoS2. Nano Lett 10:1271ā€“1275

    ArticleĀ  CASĀ  Google ScholarĀ 

  25. Mak KF et al (2010) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105:136805

    ArticleĀ  CASĀ  Google ScholarĀ 

  26. Zeng H et al (2012) Valley polarization in MoS2 monolayers by optical pumping. Nat Nanotechnol 7:490ā€“493

    ArticleĀ  CASĀ  Google ScholarĀ 

  27. Mak KF et al (ed) (2012) Control of valley polarization in monolayer MoS2 by optical helicity. Nat Nanotechnol 7:494ā€“498

    Google ScholarĀ 

  28. Malard AM et al (2013) Observation of intense second harmonic generation from MoS2 atomic crystals. Phys Rev B 87:201401

    Google ScholarĀ 

  29. Li Y et al (2013) Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Lett 13:3329ā€“3333

    Google ScholarĀ 

  30. Kumar N et al (2013) Second harmonic microscopy of monolayer MoS2. Phys Rev B 87:161403

    Google ScholarĀ 

  31. Wu W et al (2014) Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514:470ā€“474

    ArticleĀ  CASĀ  Google ScholarĀ 

  32. Zhu H et al (2015) Observation of piezoelectricity in free-standing monolayer MoS2. Nat Nanotechnol 10:151ā€“155

    ArticleĀ  CASĀ  Google ScholarĀ 

  33. Zhang C et al (2014) Direct imaging of band profile in single layer MoS2 on graphite: quasiparticle energy gap, metallic edge states and edge band bending. Nano Lett 14:2443ā€“2447

    ArticleĀ  CASĀ  Google ScholarĀ 

  34. Chernikov A et al (2014) Exciton binding energy and nonhydrogenic rydberg series in monolayer WS2. Phys Rev Lett 113:076802

    ArticleĀ  CASĀ  Google ScholarĀ 

  35. Ye Z et al (2014) Probing excitonic dark states in single-layer tungsten disulphide. Nature 513:214ā€“218

    ArticleĀ  CASĀ  Google ScholarĀ 

  36. Ye JT et al (2012) Superconducting dome in a gate-tuned band insulator. Science 30:1193ā€“1196

    ArticleĀ  CASĀ  Google ScholarĀ 

  37. Geim AK, Grigorieva IV (2013) Van der Waals heterostructures. Nature 499:419ā€“425

    ArticleĀ  CASĀ  Google ScholarĀ 

  38. Lee JU et al (2016) Raman signatures of polytypism in molybdenum disulfide. ACS Nano 10:1948ā€“1953

    ArticleĀ  CASĀ  Google ScholarĀ 

  39. Brown BE (1966) The crystal structures of WTe2 and high-temperature MoTe2. Acta Cryst 20:268ā€“274

    ArticleĀ  CASĀ  Google ScholarĀ 

  40. Vellinga MB, Jonge R, Haas C (1970) Semiconductor to metal transition in MoTe2. J Solid Stat Chem 2:299ā€“302

    ArticleĀ  CASĀ  Google ScholarĀ 

  41. Coehoorn R, Haas C, de Groot RA (1987) Electronic structure of MoSe2, MoS2, and WSe2. II. The nature of the optical band gaps. Phys Rev B 35:6203ā€“6206

    ArticleĀ  CASĀ  Google ScholarĀ 

  42. Novoselov KS et al (2005) Two-dimensional atomic crystals. PNAS 102:10451

    ArticleĀ  CASĀ  Google ScholarĀ 

  43. Schafer H (1964) Chemical transport reactions. Academic Press, New York

    Google ScholarĀ 

  44. Koma A, Sunouchi K, Miyajima T (1984) Fabrication and characterization of heterostructures with subnanometer thickness. Microelectron Eng 2:129ā€“136

    ArticleĀ  CASĀ  Google ScholarĀ 

  45. Zheng J et al (2014) High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nature Commun 5:2995

    Google ScholarĀ 

  46. Nicolosi V et al (2013) Liquid exfoliation of layered materials. Science 340:6139

    ArticleĀ  CASĀ  Google ScholarĀ 

  47. Amara KK et al (2014) Wet chemical thinning of molybdenum disulfide down to its monolayer. APL Mater 2:092509

    ArticleĀ  CASĀ  Google ScholarĀ 

  48. Huang Y et al (2013) An innovative way of etching MoS2: characterization and mechanistic investigation. Nano Res 6:200

    ArticleĀ  CASĀ  Google ScholarĀ 

  49. Liu Y et al (2013) Layer-by-layer thinning of MoS2 by plasma. ACS Nano 7:4202

    ArticleĀ  CASĀ  Google ScholarĀ 

  50. Castellanos-Gomez A et al (2012) Laser-thinning of MoS2: on demand generation of a single-layer semiconductor. Nano Lett 12:3187

    ArticleĀ  CASĀ  Google ScholarĀ 

  51. Altavilla C, Sarno M, Ciambelli P (2011) A novel wet chemistry approach for the synthesis of hybrid 2D free-floating single or multilayer nanosheets of MS2@oleylamine (M=Mo, W). Chem Mater 23:3879

    ArticleĀ  CASĀ  Google ScholarĀ 

  52. Tan LK et al (2014) Atomic layer deposition of a MoS2 film. Nanoscale 6:10584

    ArticleĀ  CASĀ  Google ScholarĀ 

  53. Zhan Y et al (2012) Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8:966

    ArticleĀ  CASĀ  Google ScholarĀ 

  54. Liu K-K et al (2012) Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett 12:1538

    ArticleĀ  CASĀ  Google ScholarĀ 

  55. Lee Y-H et al (2012) Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv Mater 24:2320

    ArticleĀ  CASĀ  Google ScholarĀ 

  56. Amani M et al (2013) Electrical performance of monolayer MoS2 field-effect transistors prepared by chemical vapor deposition. Appl Phys Lett 102:193107

    ArticleĀ  CASĀ  Google ScholarĀ 

  57. van der Zande AM et al (2013) Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat Mater 12:554

    ArticleĀ  CASĀ  Google ScholarĀ 

  58. Wang H et al (2012) Integrated circuits based on bilayer MoS2 transistors. Nano Lett 12:4674

    ArticleĀ  CASĀ  Google ScholarĀ 

  59. Najmaei S et al (2013) Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat Mater 12:754

    ArticleĀ  CASĀ  Google ScholarĀ 

  60. Yu Y et al (2013) Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films. Sci Rep 3:1866

    Google ScholarĀ 

  61. Gong C et al (2013) Metal contacts on physical vapor deposited monolayer MoS2. ACS Nano 7:11350

    ArticleĀ  CASĀ  Google ScholarĀ 

  62. Liu Y et al (2014) Mesoscale imperfections in MoS2 atomic layers grown by a vapor transport technique. Nano Lett 14:4682

    ArticleĀ  CASĀ  Google ScholarĀ 

  63. Liu H et al (2013) Statistical study of deep submicron dual-gated field-effect transistors on monolayer chemical vapor deposition molybdenum disulfide films. Nano Lett 13:2640

    ArticleĀ  CASĀ  Google ScholarĀ 

  64. Liu B et al (2014) High-performance chemical sensing using schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors. ACS Nano 8:5304

    ArticleĀ  CASĀ  Google ScholarĀ 

  65. Najmaei S et al (2014) Electrical transport properties of polycrystalline monolayer molybdenum disulfide. ACS Nano 8:7930

    ArticleĀ  CASĀ  Google ScholarĀ 

  66. Schmidt H et al (2014) Transport properties of monolayer MoS2 grown by chemical vapor deposition. Nano Lett 14:1909

    ArticleĀ  CASĀ  Google ScholarĀ 

  67. Dumcenco D et al (2015) Large-area epitaxial monolayer MoS2. ACS Nano 9:4611ā€“4620

    ArticleĀ  CASĀ  Google ScholarĀ 

  68. Zhu W et al (2014) Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition. Nat Commun 5:3087

    Google ScholarĀ 

  69. Wang X et al (2014) Chemical vapor deposition growth of crystalline monolayer MoSe2. ACS Nano 8:5125

    ArticleĀ  CASĀ  Google ScholarĀ 

  70. Shaw JC et al (2014) Chemical vapor deposition growth of monolayer MoSe2 and nanosheets. Nano Res 7:1

    ArticleĀ  CASĀ  Google ScholarĀ 

  71. Zhang Y et al (2013) Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS Nano 7:8963

    ArticleĀ  CASĀ  Google ScholarĀ 

  72. Sirlina T et al (2000) Study on preparation, growth mechanism, and optoelectronic properties of highly oriented WSe2 thin films. J Mater Res 15:2636

    Google ScholarĀ 

  73. Huang J-K et al (2014) Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano 8:923

    ArticleĀ  CASĀ  Google ScholarĀ 

  74. Gong Y et al (2014) Band gap engineering and layer-by-layer mapping of selenium-doped molybdenum disulfide. Nano Lett 14:442

    ArticleĀ  CASĀ  Google ScholarĀ 

  75. Lin Y-C et al (2014) Properties of individual dopant atoms in single-layer MoS2: atomic structure, migration, and enhanced reactivity. Adv Mater 26:2857

    ArticleĀ  CASĀ  Google ScholarĀ 

  76. Hong J et al (2015) Exploring atomic defects in molybdenum disulphide monolayers. Nat Commun 6:6293

    ArticleĀ  CASĀ  Google ScholarĀ 

  77. Zhou W et al (2013) Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett 13:2615

    ArticleĀ  CASĀ  Google ScholarĀ 

  78. Lu C-P et al (2014) Bandgap, mid-gap states, and gating effects in MoS2. Nano Lett 14:4628

    ArticleĀ  CASĀ  Google ScholarĀ 

  79. Tongay S et al (2013) Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons. Sci Rep 3:2657

    ArticleĀ  Google ScholarĀ 

  80. Radisavljevic B et al (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6:147

    ArticleĀ  CASĀ  Google ScholarĀ 

  81. Kim S et al (2012) High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat Commun 3:1011

    ArticleĀ  CASĀ  Google ScholarĀ 

  82. Baugher BWH et al (2013) Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2. Nano Lett 13:4212

    ArticleĀ  CASĀ  Google ScholarĀ 

  83. Wang Z et al (2013) Hopping transport through defect-induced localized states in molybdenum disulphide. Nat Commun 4:2642

    Google ScholarĀ 

  84. Yu Z et al (2014) Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. Nat Commun 5:5290

    ArticleĀ  CASĀ  Google ScholarĀ 

  85. Liu G-B et al (2015) Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides. Chem Soc Rev 44:2643ā€“2663

    ArticleĀ  CASĀ  Google ScholarĀ 

  86. Zhao W et al (2013) Evolution ofĀ electronic structure in atomically thin sheets of WS2Ā and WSe2.Ā ACS Nano 7:791ā€“797

    Google ScholarĀ 

  87. Tongay S et al (2012) Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett 12:5576ā€“5580

    ArticleĀ  CASĀ  Google ScholarĀ 

  88. Zhang Y et al (2014) Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat Nanotechnol 9:111ā€“115

    ArticleĀ  CASĀ  Google ScholarĀ 

  89. Jin W et al (2013) Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy. Phys Rev Lett 111:106801

    ArticleĀ  CASĀ  Google ScholarĀ 

  90. Zeng H et al (2013) Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Sci Rep 3:1608

    Google ScholarĀ 

  91. Zhang C et al (2015) Probing critical point energies of transition metal dichalcogenides: surprising indirect gap of single layer WSe2. Nano Lett 15:6494ā€“6500

    ArticleĀ  CASĀ  Google ScholarĀ 

  92. Lezama IG et al (2015) Indirect-to-direct band gap crossover in few-layer MoTe2. Nano Lett 15:2336ā€“2342

    ArticleĀ  CASĀ  Google ScholarĀ 

  93. Schmidt H, Giustiniano F, Eda G (2015) Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects. Chem Soc Rev 44:7715ā€“7736

    ArticleĀ  CASĀ  Google ScholarĀ 

  94. Zhao W, Mendes Ribeiro R, Eda G (2015) Electronic structure and optical signatures of semiconducting transition metal dichalcogenide nanosheets. Acc Chem Res 48:91ā€“99

    ArticleĀ  CASĀ  Google ScholarĀ 

  95. Yoffe AD (2002) Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems. Adv Phys 51:799ā€“890

    ArticleĀ  Google ScholarĀ 

  96. Cheiwchanchamnangij T, Lambrecht WRL (2012) Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2. Phys Rev B 85:205302

    ArticleĀ  CASĀ  Google ScholarĀ 

  97. Tongay S et al (2013) Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett 13:2831ā€“2836

    ArticleĀ  CASĀ  Google ScholarĀ 

  98. Komsa HP, Krasheninnikov AV (2012) Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles. Phys Rev B 86:241201

    ArticleĀ  CASĀ  Google ScholarĀ 

  99. Yu H et al (2015) Valley excitons in two-dimensional semiconductors. Natl Sci Rev 2:57ā€“70

    ArticleĀ  Google ScholarĀ 

  100. Xu X et al (2014) Spin and pseudospins in layered transition metal dichalcogenides. Nat Phys 10:343ā€“350

    ArticleĀ  CASĀ  Google ScholarĀ 

  101. Zhao W et al (2013) Origin of indirect optical transitions in few-layer MoS2, WS2, and WSe2. Nano Lett 13:5627ā€“5634

    ArticleĀ  CASĀ  Google ScholarĀ 

  102. Mak KF et al (2013) Tightly bound trions in monolayer MoS2. Nat Mater 12:207ā€“211

    ArticleĀ  CASĀ  Google ScholarĀ 

  103. You Y et al (2015) Observation of biexcitons in monolayer WSe2. Nat Phys 11:477ā€“481

    ArticleĀ  CASĀ  Google ScholarĀ 

  104. Jones AM et al (2013) Optical generation of excitonic valley coherence in monolayer WSe2. Nat Nanotechnol 8:634ā€“638

    ArticleĀ  CASĀ  Google ScholarĀ 

  105. Ross JS et al (2013) Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat Commun 4:1474

    ArticleĀ  CASĀ  Google ScholarĀ 

  106. Castellanos-Gomez A et al (2013) Local strain engineering in atomically thin MoS2. Nano Lett 13:5361

    ArticleĀ  CASĀ  Google ScholarĀ 

  107. Conley HJ et al (2013) Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett 13:3626

    ArticleĀ  CASĀ  Google ScholarĀ 

  108. Qiu DY, da Jornada FH, Louie SG (2013) Optical spectrum of MoS2: many-body effects and diversity of exciton states. Phys Rev Lett 111:216805

    ArticleĀ  CASĀ  Google ScholarĀ 

  109. Beal AR, Hughes HP (1979) Kramers-Kronig analysis of the reflectivity spectra of 2H-MoS2, 2H-MoSe2 and 2H-MoTe2. J Phys C Solid Stat Phys 12:881

    ArticleĀ  CASĀ  Google ScholarĀ 

  110. Carvalho A, Ribeiro RM, Castro Neto AH (2013) Band nesting and the optical response of two-dimensional semiconducting transition metal dichalcogenides. Phys Rev B 88:115205

    ArticleĀ  CASĀ  Google ScholarĀ 

  111. Kumar R, Verzhbitskiy I, Eda G (2015) Strong optical absorption and photocarrier relaxation in two-dimensional semiconductors. IEEE J Quant Elec 51:0600206

    ArticleĀ  CASĀ  Google ScholarĀ 

  112. Britnell L et al (2013) Strong light-matter interactions in heterostructures of atomically thin films. Science 340:1311ā€“1314

    ArticleĀ  CASĀ  Google ScholarĀ 

  113. Feng J et al (2012) Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat Photon 6:865ā€“871

    ArticleĀ  CASĀ  Google ScholarĀ 

  114. Nair RR et al (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308

    ArticleĀ  CASĀ  Google ScholarĀ 

  115. Yun WS et al (2012) Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M=Mo, W; X=S, Se, Te). Phys Rev B 85:033305

    ArticleĀ  CASĀ  Google ScholarĀ 

  116. Kuc A, Zibouche N, Heine T (2011) Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys Rev B 83:245213

    ArticleĀ  CASĀ  Google ScholarĀ 

  117. Ramasubramaniam A, Naveh D, Towe E (2011) Tunable band gaps in bilayer transition-metal dichalcogenides. Phys Rev B 84:205325

    ArticleĀ  CASĀ  Google ScholarĀ 

  118. Klein A et al (2001) Electronic band structure of single-crystal and single-layer WS2: influence of interlayer van der Waals interactions. Phys Rev B 64:205416

    ArticleĀ  CASĀ  Google ScholarĀ 

  119. Ugeda MM et al (2014) Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat Mater 13:1091ā€“1095

    ArticleĀ  CASĀ  Google ScholarĀ 

  120. Chernikov A et al (2015) Electrical tuning of exciton binding energies in monolayer WS2. Phys Rev Lett 115:126802

    Google ScholarĀ 

  121. Yuan H et al (2013) Zeeman-type spin splitting controlled by an electric field. Nat Phys 9:563ā€“569

    ArticleĀ  CASĀ  Google ScholarĀ 

  122. Ruppert C, Aslan OB, Heinz TF (2014) Optical properties and band gap of single- and few-layer MoTe2 crystals. Nano Lett 14:6231ā€“6236

    ArticleĀ  CASĀ  Google ScholarĀ 

  123. Py MA, Haering RR (1983) Structural destabilization induced by lithium intercalation in MoS2 and related compounds. Can J Phys 61:76ā€“84

    ArticleĀ  CASĀ  Google ScholarĀ 

  124. Voiry D, Mohite A, Chhowalla M (2015) Phase engineering of transition metal dichalcogenides. Chem Soc Rev 44:2702ā€“2712

    ArticleĀ  CASĀ  Google ScholarĀ 

  125. Eda G et al (2011) Photoluminescence from chemically exfoliated MoS2. Nano Lett 11:5111ā€“5116

    ArticleĀ  CASĀ  Google ScholarĀ 

  126. Joensen P, Frindt RF, Morrison SR (1986) Single-layer MoS2. Mater Res Bull 21:457ā€“461

    ArticleĀ  CASĀ  Google ScholarĀ 

  127. Papageorgopoulos CA, Jaegermann W (1995) Li intercalation across and along the van der Waals surfaces of MoS2 (0001). Surf Sci 338:83ā€“93

    Google ScholarĀ 

  128. Li LJ et al (2016) Controlling many-body states by the electric-field effect in a two-dimensional material. Nature 529:185ā€“189

    Google ScholarĀ 

  129. Zhang C et al (2014) Absorption of light by excitons and trions in monolayers of metal dichalcogenide MoS2: experiments and theory. Phys Rev B 89:205436

    Google ScholarĀ 

  130. Nguyen DT et al (2011) Elastic exciton-exciton scattering in photoexcited carbon nanotubes. Phys Rev Lett 107:127401

    ArticleĀ  CASĀ  Google ScholarĀ 

  131. Qiu DY, da Jornada FH, Louie SG (2015) Erratum: optical spectrum of MoS2: many-body effects and diversity of exciton states. Phys Rev Lett 115:119901

    Google ScholarĀ 

  132. Miller RC et al (1981) Observation of the excited level of excitons in GaAs quantum wells. Phys Rev B 24:1134

    ArticleĀ  CASĀ  Google ScholarĀ 

  133. Greene RL, Bajaj KK, Phelps DE (1984) Energy levels of Wannier excitons in GaAsāˆ’Ga1āˆ’xAlxAs quantum-well structures. Phys Rev B 29:1807

    ArticleĀ  CASĀ  Google ScholarĀ 

  134. Beal AR, Knights JC, Liang WY (1972) Transmission spectra of some transition metal dichalcogenides. II. Group VIA: trigonal prismatic coordination. Phys C Sol Stat Phys 5:3540ā€“3551

    ArticleĀ  CASĀ  Google ScholarĀ 

  135. Klots AR et al (2014) Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy. Sci Rep 4:6608

    ArticleĀ  CASĀ  Google ScholarĀ 

  136. Hill HM et al (2015) Observation of excitonic rydberg states in monolayer MoS2 and WS2 by photoluminescence excitation spectroscopy. Nano Lett 13:2992ā€“2997

    ArticleĀ  CASĀ  Google ScholarĀ 

  137. Zhu B, Chen X, Cui X (2015) Exciton binding energy of monolayer WS2. Sci Rep 5:9218

    ArticleĀ  CASĀ  Google ScholarĀ 

  138. Berkelbach TC, Hybertsen MS, Reichman DR (2013) Theory of neutral and charged excitons in monolayer transition metal dichalcogenides. Phys Rev B 88:045318

    ArticleĀ  CASĀ  Google ScholarĀ 

  139. Kheng K et al (1993) Observation of negatively charged excitons Xāˆ’ in semiconductor quantum wells. Phys Rev Lett 71:1752

    ArticleĀ  CASĀ  Google ScholarĀ 

  140. Finkelstein G, Shtrikman H, Bar-Joseph I (1995) Optical spectroscopy of a two-dimensional electron gas near the metal-insulator transition. Phys Rev Lett 74:976

    ArticleĀ  CASĀ  Google ScholarĀ 

  141. Sergeev RA, Suris RA (2001) Ground-state energy of Xāˆ’ and X+ trions in a two-dimensional quantum well at an arbitrary mass ratio. Phys Sol Stat 43:746ā€“751

    ArticleĀ  CASĀ  Google ScholarĀ 

  142. Thilagam A (1997) Two-dimensional charged-exciton complexes. Phys Rev B 55:7804ā€“7808

    ArticleĀ  CASĀ  Google ScholarĀ 

  143. Klingshirn CF (2007) Semiconductor Optics. Springer, Berlin

    BookĀ  Google ScholarĀ 

  144. He Z et al (2016) Biexciton formation in bilayer tungsten disulfide. ACS Nano 10:2176ā€“2183

    ArticleĀ  CASĀ  Google ScholarĀ 

  145. Mai C et al (2014) Many-body effects in valleytronics: direct measurement of valley lifetimes in single-layer MoS2. Nano Lett 14:202ā€“206

    ArticleĀ  CASĀ  Google ScholarĀ 

  146. Sie EJ et al (2015) Intervalley biexcitons and many-body effects in monolayer MoS2. Phys Rev B 92:125417

    Google ScholarĀ 

  147. Mitioglu AA et al (2013) Optical manipulation of the exciton charge state in single-layer tungsten disulfide. Phys Rev B 88:245403

    ArticleĀ  CASĀ  Google ScholarĀ 

  148. Plechinger G et al (2015) Identification of excitons, trions and biexcitons in single-layer WS2. Phys Stat Sol RRL 9:457ā€“467

    ArticleĀ  CASĀ  Google ScholarĀ 

  149. Shang J et al (2015) Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor. ACS Nano 9:647ā€“655

    ArticleĀ  CASĀ  Google ScholarĀ 

  150. Liu H et al (2014) Dense network of one-dimensional midgap metallic modes in monolayer MoSe2 and their spatial undulations. Phys Rev Lett 113:066105

    ArticleĀ  CASĀ  Google ScholarĀ 

  151. He K et al (2014) Tightly bound excitons in monolayer WSe2. Phys Rev Lett 113:026803

    ArticleĀ  CASĀ  Google ScholarĀ 

  152. Wang G et al (2015) Giant enhancement of the optical second-harmonic emission of WSe2 monolayers by laser excitation at exciton resonances. Phys Rev Lett 114:097403

    ArticleĀ  CASĀ  Google ScholarĀ 

  153. Yang J et al (2015) Robust excitons and trions in monolayer MoTe2. ACS Nano 9:6603ā€“6609

    ArticleĀ  CASĀ  Google ScholarĀ 

  154. Zhu X et al (1995) Exciton condensate in semiconductor quantum well structures. Phys Rev Lett 74:1633

    ArticleĀ  CASĀ  Google ScholarĀ 

  155. Butov LV et al (2002) Towards Bose-Einstein condensation of excitons in potential traps. Nature 417:47ā€“52

    ArticleĀ  CASĀ  Google ScholarĀ 

  156. Fox AM et al (1992) Suppression of the observation of Stark ladders in optical measurements on superlattices by excitonic effects. Phys Rev B 46:15365

    ArticleĀ  CASĀ  Google ScholarĀ 

  157. Kato Y et al (1994) Observation of the Stark effect in coupled quantum wells by electroluminescence and circularly polarized photoluminescence excitation spectroscopy. J Appl Phys 75:7476

    ArticleĀ  CASĀ  Google ScholarĀ 

  158. Schuller JA et al (2013) Orientation of luminescent excitons in layered nanomaterials. Nat Nanotechnol 8:271ā€“276

    ArticleĀ  CASĀ  Google ScholarĀ 

  159. Jones AM et al (2014) Spinā€“layer locking effects in optical orientation of exciton spin in bilayer WSe2. Nat Phys 10:130ā€“134

    ArticleĀ  CASĀ  Google ScholarĀ 

  160. Fang H et al (2014) Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. PNAS 111:6198ā€“6202

    ArticleĀ  CASĀ  Google ScholarĀ 

  161. Rivera P et al (2015) Observation of long-lived interlayer excitons in monolayer MoSe2ā€“WSe2 heterostructures. Nat Commun 6:6242

    ArticleĀ  CASĀ  Google ScholarĀ 

  162. Rivera P et al (2016) Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 351:688ā€“691

    ArticleĀ  CASĀ  Google ScholarĀ 

  163. Li G, Zhu R, Yang Y (2012) Polymer solar cells. Nat Photonics 6:153ā€“161

    ArticleĀ  CASĀ  Google ScholarĀ 

  164. Kośmider K, FernĆ”ndez-Rossier J (2013) Electronic properties of the MoS2ā€“WS2 heterojunction. Phys Rev B 87:075451

    ArticleĀ  CASĀ  Google ScholarĀ 

  165. ƖzƧelik VO et al (2016) Band alignment of 2D semiconductors for designing heterostructures with momentum space matching. Phys Rev BĀ 94:035125

    Google ScholarĀ 

  166. Kang J et al (2013) Band offsets and heterostructures of two-dimensional semiconductors. Appl Phys Lett 102:012111

    Google ScholarĀ 

  167. Terrones H, Lopez-Urias F, Terrones M (2013) Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides. Sci Rep 3:1549

    ArticleĀ  CASĀ  Google ScholarĀ 

  168. Yu H et al (2015) Anomalous light cones and valley optical selection rules of interlayer excitons in twisted heterobilayers. Phys Rev Lett 115:187002

    ArticleĀ  CASĀ  Google ScholarĀ 

  169. Lin Y-C et al (2015) Single-layer ReS2: two-dimensional semiconductor with tunable in-plane anisotropy. ACS Nano 9:11249ā€“11257

    ArticleĀ  CASĀ  Google ScholarĀ 

  170. Dai J, Zeng XC (2015) Titanium trisulfide monolayer: theoretical prediction of a new direct-gap semiconductor with high and anisotropic carrier mobility. Angew Chem Int Ed 54:7572ā€“7576

    ArticleĀ  CASĀ  Google ScholarĀ 

  171. Rodin AS et al (2016) Valley physics in tin (II) sulfide. Phys Rev B 93:045431

    ArticleĀ  CASĀ  Google ScholarĀ 

  172. Tritsaris GA, Malone BD, Kaxiras E (2013) Optoelectronic properties of single-layer, double-layer, and bulk tin sulfide: a theoretical study. J Appl Phys 113:233507

    ArticleĀ  CASĀ  Google ScholarĀ 

  173. Island JO et al (2015) TiS3 transistors with tailored morphology and electrical properties. Adv Mater 27:2595ā€“2601

    ArticleĀ  CASĀ  Google ScholarĀ 

  174. Hu P et al (2012) Synthesis of few-layer GaSe nanosheets for high performance photodetectors. ACS Nano 6:5988ā€“5994

    ArticleĀ  CASĀ  Google ScholarĀ 

  175. Ramakrishna Reddy KT, Koteswara Reddy N, Miles RW (2006) Photovoltaic properties of SnS based solar cells. Sol Energy Mater Sol Cells 90:3041ā€“3046

    ArticleĀ  CASĀ  Google ScholarĀ 

  176. Schwarz S et al (2014) Two-dimensional metalāˆ’chalcogenide films in tunable optical microcavities. Nano Lett 14:7003ā€“7008

    ArticleĀ  CASĀ  Google ScholarĀ 

  177. Zhao L-D et al (2014) Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508:373ā€“377

    ArticleĀ  CASĀ  Google ScholarĀ 

  178. Li X et al (2014) Controlled vapor phase growth of single crystalline, two-dimensional GaSe crystals with high photoresponse. Sci Rep 4:5497

    CASĀ  Google ScholarĀ 

  179. Hu P et al (2013) Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. Nano Lett 13:1649ā€“1654

    ArticleĀ  CASĀ  Google ScholarĀ 

  180. Liu F et al (2014) High-sensitivity photodetectors based on multilayer GaTe flakes. ACS Nano 8:752ā€“760

    ArticleĀ  CASĀ  Google ScholarĀ 

  181. Sanchez-Royo JF et al (2002) Angle-resolved photoemission study and first-principles calculation of the electronic structure of GaTe. Phys Rev B 65:115201

    ArticleĀ  CASĀ  Google ScholarĀ 

  182. Zhang HL, Hennig RG (2003) Single-layer group-III monochalcogenide photocatalysts for water splitting. Chem Mater 25:3232ā€“3238

    ArticleĀ  CASĀ  Google ScholarĀ 

  183. Jung CS et al (2015) Red-to-ultraviolet emission tuning of two-dimensional gallium sulfide/selenide. ACS Nano 9:9585ā€“9593

    ArticleĀ  CASĀ  Google ScholarĀ 

  184. Ma Y et al (2013) Tunable electronic and dielectric behavior of GaS and GaSe monolayers. Phys Chem Chem Phys 15:7098ā€“7105

    ArticleĀ  CASĀ  Google ScholarĀ 

  185. Li H et al (2014) Growth of alloy MoS2xSe2(1ā€“x) nanosheets with fully tunable chemical compositions and optical properties. J Am Chem Soc 136:3756ā€“3759

    ArticleĀ  CASĀ  Google ScholarĀ 

  186. Dumcenco DO et al (2013) Visualization and quantification of transition metal atomic mixing in Mo1ā€“xWxS2 single layers. Nat Commun 4:1351

    Google ScholarĀ 

  187. Zhang M et al (2014) Two-dimensional molybdenum tungsten diselenide alloys: photoluminescence, raman scattering, and electrical transport. ACS Nano 8:7130ā€“7137

    ArticleĀ  CASĀ  Google ScholarĀ 

  188. Tongay S et al (2014) Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling. Nat Commun 5:3252

    ArticleĀ  CASĀ  Google ScholarĀ 

  189. Zhao H et al (2015) Interlayer interactions in anisotropic atomically thin rhenium diselenide. Nano Res 8:3651ā€“3661

    ArticleĀ  CASĀ  Google ScholarĀ 

  190. Aslan OB et al (2016) Linearly polarized excitons in single- and few-layer ReS2 crystals. ACS Photon 3:96ā€“101

    ArticleĀ  CASĀ  Google ScholarĀ 

  191. Chenet DA et al (2015) In-plane anisotropy in mono- and few-layer ReS2 probed by Raman spectroscopy and scanning transmission electron microscopy. Nano Lett 15:5667ā€“5672

    ArticleĀ  CASĀ  Google ScholarĀ 

  192. Zhong H-X et al (2015) Quasiparticle band gaps, excitonic effects, and anisotropic optical properties of the monolayerĀ distortedĀ 1TĀ diamond-chain structuresĀ ReS2Ā andĀ ReSe2. Phys Rev B 92:115438

    Google ScholarĀ 

  193. Jin Y, Li X, Yang J (2015) Single layer of MX3 (M=Ti, Zr; X=S, Se, Te): a new platform for nano-electronics and optics. Phys Chem Chem Phys 17:18665ā€“18669

    ArticleĀ  CASĀ  Google ScholarĀ 

  194. Gorlova I et al (2012) Nonlinear conductivity of quasi-one-dimensional layered compound TiS3. Physica B 407:1707

    ArticleĀ  CASĀ  Google ScholarĀ 

  195. Zaitsev-Zotov SV, Pokrovskii V Ya, Monceau P (2001) Transition to 1D conduction with decreasing thickness of the crystals of TaS3 and NbSe3 quasi-1D conductors. J Exp Theor Phys Lett 73:25ā€“27

    ArticleĀ  CASĀ  Google ScholarĀ 

  196. Slot E et al (2004) One-dimensional conduction in charge-density-wave nanowires. Phys Rev Lett 93:176602

    ArticleĀ  CASĀ  Google ScholarĀ 

  197. Island JO et al (2014) Ultrahigh photoresponse of few-layer TiS3 nanoribbon transistors. Adv Opt Mat 2:641ā€“645

    Google ScholarĀ 

  198. Island JO et al (2016) Titanium trisulfide (TiS3): a 2D semiconductor with quasi-1D optical and electronic properties. Sci Rep 6:22214

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goki Eda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2017 Springer Japan KK

About this chapter

Cite this chapter

Verzhbitskiy, I., Eda, G. (2017). Chalcogenide Nanosheets: Optical Signatures of Many-Body Effects and Electronic Band Structure. In: Nakato, T., Kawamata, J., Takagi, S. (eds) Inorganic Nanosheets and Nanosheet-Based Materials. Nanostructure Science and Technology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56496-6_5

Download citation

Publish with us

Policies and ethics