Skip to main content

Free d-Aspartate in Nonmammalian Animals: Detection, Localization, Metabolism, and Function

  • Chapter
  • First Online:
D-Amino Acids

Abstract

Many functions of amino acids, including protein synthesis, require that they be in the l-form. As a result, in most biological systems, the levels of free d-amino acids (DAAs) are enzymatically suppressed. However, the site-specific synthesis, accumulation, and release of DAAs do occur. In fact, the accumulation of DAAs in the nervous, exocrine, and endocrine systems suggests that they perform specific functions. The focus here is on the well-studied DAA, d-aspartate; we review the advancements in the analytical approaches used for its detection and characterization and discuss the role it plays in the structural and functional organization of numerous biological systems of nonmammalian animals. The view that d-Asp has specific functions is supported by a large body of experimental data showing its endogenous synthesis, accumulation, release, stimulation of follower cells, uptake, and enzymatic catabolism. A variety of biological models, each having distinct anatomies, morphologies, biochemistries, and behaviors, have been used to investigate the fundamental mechanisms of d-Asp involvement in the normal and pathological functioning of cells and organisms. Many physiological and behavioral effects induced by d-Asp have been documented, demonstrating it has neurotransmitter, hormonal, and neuromodulator roles. Similar to many classical neurotransmitters, d-Asp has physiological roles that are conserved throughout the evolutionary tree, with nearly all studied animals shown to possess and use d-Asp.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe K (2006) Cloning and expression of the pyridoxal 5′-phosphate-dependent aspartate racemase gene from the bivalve mollusk Scapharca broughtonii and characterization of the recombinant enzyme. J Biochem 139(2):235–244. doi:10.1093/jb/mvj028

    Article  CAS  PubMed  Google Scholar 

  • Adachi M, Koyama H, Long Z, Sekine M, Furuchi T, Imai K, Nimura N, Shimamoto K, Nakajima T, Homma H (2004) l-Glutamate in the extracellular space regulates endogenous d-aspartate homeostasis in rat pheochromocytoma MPT1 cells. Arch Biochem Biophys 424(1):89–96. doi:10.1016/j.abb.2004.01.016

    Article  CAS  PubMed  Google Scholar 

  • Ali H, Pätzold R, Brückner H (2010) Gas chromatographic determination of amino acid enantiomers in bottled and aged wines. Amino Acids 38(3):951–958. doi:10.1007/s00726-009-0304-1

    Article  CAS  PubMed  Google Scholar 

  • Allenmark S, Andersson S (1991) Chiral amino acid microanalysis by direct optical resolution of fluorescent derivatives on BSA-based (resolvosil) columns. Chromatographia 31(9-10):429–433. doi:10.1007/BF02262384

    Article  CAS  Google Scholar 

  • Armstrong DW, Yang X, Han SM, Menges RA (1987) Direct liquid chromatographic separation of racemates with an alpha-cyclodextrin bonded phase. Anal Chem 59(21):2594–2596. doi:10.1021/ac00148a014

    Article  CAS  PubMed  Google Scholar 

  • Assisi L, Botte V, D’Aniello A, Di Fiore MM (2001) Enhancement of aromatase activity by d-aspartic acid in the ovary of the lizard Podarcis s. Sicula. Reproduction 121(5):803–808. doi:10.1530/rep.0.1210803

    Article  CAS  PubMed  Google Scholar 

  • Aswad DW (1984) Determination of d- and l-aspartate in amino acid mixtures by high-performance liquid chromatography after derivatization with a chiral adduct of o-phthaldialdehyde. Anal Biochem 137(2):405–409. http://dx.doi.org/10.1016/0003-2697(84)90106-4

    Article  CAS  PubMed  Google Scholar 

  • Azua I, Goiriena I, Bana Z, Iriberri J, Unanue M (2014) Release and consumption of d-amino acids during growth of marine prokaryotes. Microb Ecol 67(1):1–12. doi:10.1007/s00248-013-0294-0

    Article  CAS  PubMed  Google Scholar 

  • Baccari G, Di Fiore M, Monteforte R, Raucci F, D’Aniello A (2003) d-aspartic acid induces merocrine secretion in the frog harderian gland. Rend Fis Acc Lincei 14(3):205–215. doi:10.1007/bf02904524

    Article  Google Scholar 

  • Benner R, Herndl GJ (2011) Bacterially derived dissolved organic matter in the microbial carbon pump. In: Jiao N, Azam F, Sanders S (eds) Microbial carbon pump in the ocean. Science/AAAS, Washington, DC, pp 46–48. doi:10.1126/science.opms.sb0001

    Google Scholar 

  • Bertrand M, Chabin A, Brack A, Westall F (2008) Separation of amino acid enantiomers VIA chiral derivatization and non-chiral gas chromatography. J Chromatogr 1180(1–2):131–137. http://dx.doi.org/10.1016/j.chroma.2007.12.004

    Article  CAS  Google Scholar 

  • Besson MT, Soustelle L, Birman S (2000) Selective high-affinity transport of aspartate by a Drosophila homologue of the excitatory amino-acid transporters. Curr Biol 10(4):207–210

    Article  CAS  PubMed  Google Scholar 

  • Boudko DY (2010) Molecular ontology of amino acid transport. In: Gerencser GA (ed) Epithelial transport physiology. Humana Press, Totowa, NJ, pp 379–472. doi:10.1007/978-1-60327-229-2_16

    Google Scholar 

  • Broer S (2008) Amino acid transport across mammalian intestinal and renal epithelia. Physiol Rev 88(1):249–286. doi:10.1152/physrev.00018.2006

    Article  CAS  PubMed  Google Scholar 

  • Brückner H, Hausch M (1993) Gas chromatographic characterization of free d-amino acids in the blood serum of patients with renal disorders and of healthy volunteers. J Chromatogr 614(1):7–17. http://dx.doi.org/10.1016/0378-4347(93)80218-S

    Article  PubMed  Google Scholar 

  • Brückner H, Westhauser T (2003) Chromatographic determination of l- and d-amino acids in plants. Amino Acids 24(1–2):43–55. doi:10.1007/s00726-002-0322-8

    PubMed  Google Scholar 

  • Buck RH, Krummen K (1987) High-performance liquid chromatographic determination of enantiomeric amino acids and amino alcohols after derivatization with o-phthaldialdehyde and various chiral mercaptans: application to peptide hydrolysates. J Chromatogr 387(0):255–265. http://dx.doi.org/10.1016/S0021-9673(01)94529-7

    Article  CAS  PubMed  Google Scholar 

  • Burrone L, Di Giovanni M, Di Fiore MM, Chieffi Baccari G, Santillo A (2010) Effects of d-aspartate treatment on d-aspartate oxidase, superoxide dismutase, and caspase 3 activities in frog (Rana esculenta) tissues. Chem Biodivers 7:1459–1466. doi:10.1002/cbdv.200900331

    Article  CAS  PubMed  Google Scholar 

  • Burrone L, Santillo A, Pinelli C, Baccari GC, Di Fiore MM (2012) Induced synthesis of P450 aromatase and 17β-estradiol by d-aspartate in frog brain. J Exp Biol 215(20):3559–3565. doi:10.1242/jeb.073296

    Article  CAS  PubMed  Google Scholar 

  • Carlson SL, Fieber LA (2011) Physiological evidence that d-aspartate activates a current distinct from ionotropic glutamate receptor currents in Aplysia californica neurons. J Neurophysiol 106(4):1629–1636. doi:10.1152/jn.00403.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlson SL, Kempsell AT, Fieber LA (2012) Pharmacological evidence that d-aspartate activates a current distinct from ionotropic glutamate receptor currents in Aplysia californica. Brain Behav 2(4):391–401. doi:10.1002/brb3.60

    Article  PubMed  PubMed Central  Google Scholar 

  • Case J (1964) Properties of the dactyl chemoreceptors of Cancer antennarius stimpson and C productus randall. Biol Bull 127(3):428–446. doi:10.2307/1539246

    Article  CAS  Google Scholar 

  • Cheng Y, Dovichi N (1988) Subattomole amino acid analysis by capillary zone electrophoresis and laser-induced fluorescence. Science 242(4878):562–564. doi:10.1126/science.3140381

    Article  CAS  PubMed  Google Scholar 

  • D’Aniello A (2007) d-aspartic acid: an endogenous amino acid with an important neuroendocrine role. Brain Res Rev 53(2):215–234. doi:10.1016/j.brainresrev.2006.08.005

    Article  PubMed  CAS  Google Scholar 

  • D’Aniello S, Garcia-Fernandez J (2007) d-aspartic acid and l-amino acids in the neural system of the amphioxus Branchiostoma lanceolatum. Amino Acids 32(1):21–26

    Article  PubMed  CAS  Google Scholar 

  • D’Aniello A, Giuditta A (1977) Identification of d-aspartic acid in the brain of Octopus vulgaris Lam. J Neurochem 29(6):1053–1057. doi:10.1111/j.1471-4159.1977.tb06508.x

    Article  PubMed  Google Scholar 

  • D’Aniello A, Giuditta A (1978) Presence of d-aspartate in squid axoplasm and in other regions of the cephalopod nervous system. J Neurochem 31(4):1107–1108. doi:10.1111/j.1471-4159.1978.tb00155.x

    Article  PubMed  Google Scholar 

  • D’Aniello A, Vetere A, Padula L (1992) Occurrence of free d-amino acids in the gametes, embryos, larvae and adults of the sea-squirt Ciona intestinalis. Comp Biochem Phys B 102(4):795–797. doi:10.1016/0305-0491(92)90082-3

    Google Scholar 

  • D’Aniello A, D’Onofrio G, Pischetola M, D’Aniello G, Vetere A, Petrucelli L, Fisher G (1993a) Biological role of d-amino acid oxidase and d-aspartate oxidase. Effects of d-amino acids. J Biol Chem 268:26941–26949

    PubMed  Google Scholar 

  • D’Aniello A, Nardi G, Vetere A, Ferguson GP (1993b) Occurrence of free d-aspartic acid in the circumsoesophageal ganglia of Aplysia fasciata. Life Sci 52(8):733–736. doi:10.1016/0024-3205(93)90235-u

    Article  PubMed  Google Scholar 

  • D’Aniello A, Vetere A, Petrucelli L (1993c) Further study on the specificity of d-amino acid oxidase and of d-aspartate oxidase and time course for complete oxidation of d-amino acids. Comp Biochem Phys B 105(3–4):731–734. http://dx.doi.org/10.1016/0305-0491(93)90113-J

    Google Scholar 

  • D’Aniello A, Nardi G, DeSantis A, Vetere A, diCosmo A, Marchelli R, Dossena A, Fisher G (1995) Free l-amino acids and d-aspartate content in the nervous system of Cephalopoda. A comparative study. Comp Biochem Phys B 112(4):661–666. doi:10.1016/0305-0491(95)00227-8

    Article  Google Scholar 

  • D’Aniello A, Spinelli P, De Simone A, D’Aniello S, Branno M, Aniello F, Fisher GH, Di Fiore MM, Rastogi RK (2003) Occurrence and neuroendocrine role of d-aspartic acid and N-methyl-d-aspartic acid in Ciona intestinalis. FEBS Lett 552(2–3):193–198. doi:10.1016/s0014-5793(03)00921-9

    Article  PubMed  CAS  Google Scholar 

  • D’Aniello S, Spinelli P, Ferrandino G, Peterson K, Tsesarskia M, Fisher G, D’Aniello A (2005) Cephalopod vision involves dicarboxylic amino acids: d-aspartate, l-aspartate and l-glutamate. Biochem J 386:331–340. doi:10.1042/BJ20041070

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Aniello S, Somorjai I, Garcia-Fernandez J, Topo E, D’Aniello A (2010) d-aspartic acid is a novel endogenous neurotransmitter. FASEB J 25(3):1014–1027. doi:10.1096/fj.10-168492

    Article  PubMed  CAS  Google Scholar 

  • Dalton JB, Schmidt CLA (1933) The solubilities of certain amino acids in water, the densities of their solutions at twenty-five degrees, and the calculated heats of solution and partial molal volumes. J Biol Chem 103(2):549–578

    CAS  Google Scholar 

  • Di Fiore MM, Assisi L, Botte V, D’Aniello A (1998) d-aspartic acid is implicated in the control of testosterone production by the vertebrate gonad. Studies on the female green frog, Rana esculenta. J Endocrinol 157(2):199–207. doi:10.1677/joe.0.1570199

    Article  PubMed  Google Scholar 

  • Di Fiore MM, Santillo A, Chieffi Baccari G (2014) Current knowledge of d-aspartate in glandular tissues. Amino Acids 46(8):1805–1818. doi:10.1007/s00726-014-1759-2

    Article  PubMed  CAS  Google Scholar 

  • Di Giovanni M, Burrone L, Chieffi Baccari G, Topo E, Santillo A (2010) Distribution of free d-aspartic acid and d-aspartate oxidase in frog Rana esculenta tissues. J Exp Zool A Ecol Genet Physiol 303:137–143. doi:10.1002/jez.585

    Google Scholar 

  • EMBL-EBI (2014) GO:0070779 d-aspartate import. http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0070779#info=2&term=info. Accessed 30 Nov 2014

  • Errico F, Napolitano F, Nistico R, Centonze D, Usiello A (2009) d-aspartate: an atypical amino acid with neuromodulatory activity in mammals. Rev Neurosci 20(5–6):429–440

    CAS  PubMed  Google Scholar 

  • Errico F, Napolitano F, Nistico R, Usiello A (2012) New insights on the role of free d-aspartate in the mammalian brain. Amino Acids 43(5):1861–1871. doi:10.1007/s00726-012-1356-1

    Article  CAS  PubMed  Google Scholar 

  • Errico F, Di Maio A, Marsili V, Squillace M, Vitucci D, Napolitano F, Usiello A (2013) Bimodal effect of d-aspartate on brain aging processes: insights from animal models. J Biol Regul Homeost Agents 27(2):49–59

    CAS  PubMed  Google Scholar 

  • Erwan E, Tomonaga S, Yoshida J, Nagasawa M, Ogino Y, Denbow DM, Furuse M (2012) Central administration of l- and d-aspartate attenuates stress behaviors by social isolation and CRF in neonatal chicks. Amino Acids 43(5):1969–1976. doi:10.1007/s00726-012-1272-4

    Article  CAS  PubMed  Google Scholar 

  • Fieber LA, Carlson SL, Capo TR, Schmale MC (2010) Changes in d-aspartate ion currents in the Aplysia nervous system with aging. Brain Res 1343:28–36. doi:10.1016/j.brainres.2010.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foster AC, Fagg GE (1987) Comparison of l-[3H]glutamate, d-[3H]aspartate, dl-[3H]AP5 and [3H]NMDA as ligands for NMDA receptors in crude postsynaptic densities from rat brain. Eur J Pharmacol 133(3):291–300

    Article  CAS  PubMed  Google Scholar 

  • Frank H, Nicholson GJ, Bayer E (1977) Rapid gas chromatographic separation of amino acid enantiomers with a novel chiral stationary phase. J Chromatogr Sci 15(5):174–176. doi:10.1093/chromsci/15.5.174

    Article  CAS  PubMed  Google Scholar 

  • Friedman M (1999) Chemistry, nutrition, and microbiology of d-amino acids. J Agric Food Chem 47(9):3457–3479

    Article  CAS  PubMed  Google Scholar 

  • Friedman M, Levin CE (2012) Nutritional and medicinal aspects of d-amino acids. Amino Acids 42(5):1553–1582. doi:10.1007/s00726-011-0915-1

    Article  CAS  PubMed  Google Scholar 

  • Funakoshi M, Sekine M, Katane M, Furuchi T, Yohda M, Yoshikawa T, Homma H (2008) Cloning and functional characterization of Arabidopsis thaliana d-amino acid aminotransferase - d-aspartate behavior during germination. FEBS J 275(6):1188–1200. doi:10.1111/j.1742-4658.2008.06279.x

    Article  CAS  PubMed  Google Scholar 

  • Furuchi T, Homma H (2005) Free d-aspartate in mammals. Biol Pharm Bull 28(9):1566–1570

    Article  CAS  PubMed  Google Scholar 

  • Gadea A, López E, López-Colomé A (2004) Glutamate-induced inhibition of d-aspartate uptake in Müller glia from the retina. Neurochem Res 29(1):295–304. doi:10.1023/B:NERE.0000010458.45085.e8

    Article  CAS  PubMed  Google Scholar 

  • Geiger T, Clarke S (1987) Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. Succinimide-linked reactions that contribute to protein degradation. J Biol Chem 262(2):785–794

    CAS  PubMed  Google Scholar 

  • Gomez TA, Banfield KL, Clarke SG (2008) The protein l-isoaspartyl-O-methyltransferase functions in the Caenorhabditis elegans stress response. Mech Ageing Dev 129(12):752–758. doi:10.1016/j.mad.2008.09.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamase K, Morikawa A, Etoh S, Tojo Y, Miyoshi Y, Zaitsu K (2009) Analysis of small amounts of d-amino acids and the study of their physiological functions in mammals. Anal Sci 25(8):961–968. doi:10.2116/analsci.25.961

    Article  CAS  PubMed  Google Scholar 

  • Han H, Miyoshi Y, Ueno K, Okamura C, Tojo Y, Mita M, Lindner W, Zaitsu K, Hamase K (2011) Simultaneous determination of d-aspartic acid and d-glutamic acid in rat tissues and physiological fluids using a multi-loop two-dimensional HPLC procedure. J Chromatogr B Analyt Technol Biomed Life Sci 879(29):3196–3202. http://dx.doi.org/10.1016/j.jchromb.2011.01.023

    Article  CAS  PubMed  Google Scholar 

  • Homma H (2007) Biochemistry of d-aspartate in mammalian cells. Amino Acids 32(1):3–11. doi:10.1007/s00726-006-0354-6

    Article  CAS  PubMed  Google Scholar 

  • Hoopes EA, Peltzer ET, Bada JL (1978) Determination of amino acid enantiomeric ratios by gas liquid chromatography of the N-trifluoroacetyl-l-prolyl-peptide methyl esters. J Chromatogr Sci 16(11):556–560. doi:10.1093/chromsci/16.11.556

    Article  CAS  Google Scholar 

  • Jones WM, Ringe D, Soda K, Manning JM (1994) Determination of free d-amino acids with a bacterial transaminase: their depletion leads to inhibition of bacterial growth. Anal Biochem 218(1):204–209. http://dx.doi.org/10.1006/abio.1994.1161

    Article  CAS  PubMed  Google Scholar 

  • Kang L, Buck RH (1992) Separation and enantiomer determination of OPA-derivatised amino acids by using capillary zone electrophoresis. Amino Acids 2(1–2):103–109. doi:10.1007/BF00806080

    Article  CAS  PubMed  Google Scholar 

  • Kaspar H, Dettmer K, Gronwald W, Oefner PJ (2008) Automated GC–MS analysis of free amino acids in biological fluids. J Chromatogr B Analyt Technol Biomed Life Sci 870(2):222–232. http://dx.doi.org/10.1016/j.jchromb.2008.06.018

    Article  CAS  PubMed  Google Scholar 

  • Katane M, Homma H (2010) d-aspartate oxidase: the sole catabolic enzyme acting on free d-aspartate in mammals. Chem Biodivers 7(6):1435–1449. doi:10.1002/cbdv.200900250

    Article  CAS  PubMed  Google Scholar 

  • Katane M, Homma H (2011) d-aspartate – an important bioactive substance in mammals: a review from an analytical and biological point of view. J Chromatogr B Analyt Technol Biomed Life Sci 879(29):3108–3121. doi:10.1016/j.jchromb.2011.03.062

    Article  CAS  PubMed  Google Scholar 

  • Katane M, Saitoh Y, Seida Y, Sekine M, Furuchi T, Homma H (2010) Comparative characterization of three d-aspartate oxidases and one d-amino acid oxidase from Caenorhabditis elegans. Chem Biodivers 7(6):1424–1434. doi:10.1002/cbdv.200900294

    Article  CAS  PubMed  Google Scholar 

  • Kera Y, Aoyama H, Watanabe N, Yamada RH (1996) Distribution of d-aspartate oxidase and free d-glutamate and d-aspartate in chicken and pigeon tissues. Comp Biochem Physiol B: Biochem Mol Biol 115(1):121–126

    Article  CAS  Google Scholar 

  • Kim PM, Duan X, Huang AS, Liu CY, Ming GL, Song HJ, Snyder SH (2010) Aspartate racemase, generating neuronal d-aspartate, regulates adult neurogenesis. Proc Natl Acad Sci U S A 107(7):3175–3179. doi:10.1073/pnas.0914706107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitagawa F, Otsuka K (2011) Recent progress in capillary electrophoretic analysis of amino acid enantiomers. J Chromatogr B Analyt Technol Biomed Life Sci 879(29):3078–3095, http://dx.doi.org/10.1016/j.jchromb.2011.03.016

    Article  CAS  PubMed  Google Scholar 

  • Konno R (2007) d-amino acids: a new frontier in amino acids and protein research: practical methods and protocols. Nova Biomedical Books, New York

    Google Scholar 

  • Krehbiel CR, Matthews JC (2003) Absorption of amino acids and peptides. In: D’Mello JPF (ed) Amino acids in animal nutrition, 2nd edn. CABI Publishers, Wallingford/Cambridge, MA, pp 41–70

    Chapter  Google Scholar 

  • Lee J-A, Homma H, Sakai K, Fukushima T, Santa T, Tashiro K, Iwatsubo T, Yoshikawa M, Imai K (1997) Immunohistochemical localization of d-aspartate in the rat pineal gland. Biochem Biophys Res Commun 231(2):505–508, http://dx.doi.org/10.1006/bbrc.1996.5902

    Article  CAS  PubMed  Google Scholar 

  • Long Z, Homma H, Lee J, Fukushima T, Santa T, Iwatsubo T, Yamada R, Imai K (1998) Biosynthesis of d-aspartate in mammalian cells. FEBS Lett 434(3):231–235

    Article  CAS  PubMed  Google Scholar 

  • Man EH, Bada JL (1987) Dietary d-amino acids. Annu Rev Nutr 7:209–225. doi:10.1146/annurev.nu.07.070187.001233

    Article  CAS  PubMed  Google Scholar 

  • Masuda W, Nouso C, Kitamura C, Terashita M, Noguchi T (2003) Free d-aspartic acid in rat salivary glands. Arch Biochem Biophys 420(1):46–54, http://dx.doi.org/10.1016/j.abb.2003.09.032

    Article  CAS  PubMed  Google Scholar 

  • Miao H, Rubakhin SS, Sweedler JV (2005) Subcellular analysis of d-aspartate. Anal Chem 77(22):7190–7194. doi:10.1021/ac0511694

    Article  CAS  PubMed  Google Scholar 

  • Miao H, Rubakhin SS, Scanlan CR, Wang LP, Sweedler JV (2006a) d-aspartate as a putative cell-cell signaling molecule in the Aplysia californica central nervous system. J Neurochem 97(2):595–606. doi:10.1111/j.1471-4159.2006.03891.x

    Article  CAS  PubMed  Google Scholar 

  • Miao H, Rubakhin SS, Sweedler JV (2006b) Confirmation of peak assignments in capillary electrophoresis using immunoprecipitation. Application to d-aspartate measurements in neurons. J Chromatogr A 1106(1–2):56–60. doi:10.1016/j.chroma.2005.09.037

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi Y, Koga R, Oyama T, Han H, Ueno K, Masuyama K, Itoh Y, Hamase K (2012) HPLC analysis of naturally occurring free d-amino acids in mammals. J Pharm Biomed Anal 69:42–49, http://dx.doi.org/10.1016/j.jpba.2012.01.041

    Article  CAS  PubMed  Google Scholar 

  • Moini M, Schultz CL, Mahmood H (2003) CE/electrospray ionization-MS analysis of underivatized d/l-amino acids and several small neurotransmitters at attomole levels through the use of 18-crown-6-tetracarboxylic acid as a complexation reagent/background electrolyte. Anal Chem 75(22):6282–6287. doi:10.1021/ac034708i

    Article  CAS  PubMed  Google Scholar 

  • Monteforte R, Santillo A, Di Giovanni M, D’Aniello A, Di Maro A, Chieffi Baccari G (2009) d-aspartate affects secretory activity in rat Harderian gland: molecular mechanism and functional significance. Amino Acids 37(4):653–664. doi:10.1007/s00726-008-0185-8

    Article  CAS  PubMed  Google Scholar 

  • Morikawa A, Hamase K, Inoue T, Konno R, Niwa A, Zaitsu K (2001) Determination of free d-aspartic acid, d-serine and d-alanine in the brain of mutant mice lacking d-amino-acid oxidase activity. J Chromatogr B Biomed Sci Appl 757(1):119–125, http://dx.doi.org/10.1016/S0378-4347(01)00131-1

    Article  CAS  PubMed  Google Scholar 

  • Nagata Y, Akino T, Ohno K (1985) Microdetermination of serum d-amino acids. Anal Biochem 150(1):238–242, http://dx.doi.org/10.1016/0003-2697(85)90465-8

    Article  CAS  PubMed  Google Scholar 

  • Neidle A, Dunlop DS (1990) Developmental changes in free d-aspartic acid in the chicken embryo and in the neonatal rat. Life Sci 46(21):1517–1522. doi:10.1016/0024-3205(90)90424-P

    Article  CAS  PubMed  Google Scholar 

  • Nimura N, Kinoshita T (1986) O-Phthalaldehyde—N-acetyl-L-cysteine as a chiral derivatization reagent for liquid chromatographic optical resolution of amino acid ernantiomers and its application to conventional amino acid analysis. J Chromatogr 352:169–177, http://dx.doi.org/10.1016/S0021-9673(01)83377-X

    Article  CAS  Google Scholar 

  • Okuma E, Abe H (1994) Simultaneous determination of d- and l-amino acids in the nervous tissues of crustaceans using precolumn derivatization with (+)-1-(9-fluorenyl)ethyl chloroformate and reversed-phase ion-pair high-performance liquid chromatography. J Chromatogr B Biomed Appl 660(2):243–250. doi:10.1016/0378-4347(94)00304-1

    Article  CAS  PubMed  Google Scholar 

  • Ota N, Shi T, Sweedler J (2012) d-aspartate acts as a signaling molecule in nervous and neuroendocrine systems. Amino Acids 43(5):1873–1886. doi:10.1007/s00726-012-1364-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasteur L (1852) Untersuchungen über Asparaginsäure und Aepfelsäure. Justus Liebigs Ann Chem 82(3):324–335. doi:10.1002/jlac.18520820306

    Article  Google Scholar 

  • Payan IL, Cadilla-Perezrios R, Fisher GH, Man EH (1985) Analysis of problems encountered in the determination of amino acid enantiomeric ratios by gas chromatography. Anal Biochem 149(2):484–491, http://dx.doi.org/10.1016/0003-2697(85)90603-7

    Article  CAS  PubMed  Google Scholar 

  • Perez MT, Pausz C, Herndl GJ (2003) Major shift in bacterioplankton utilization of enantiomeric amino acids between surface waters and the ocean’s interior. Limnol Oceanogr 48(2):755–763

    Article  CAS  Google Scholar 

  • Raucci F (2005) Endocrine roles of d-aspartic acid in the testis of lizard Podarcis s. sicula. J Endocrinol 187(3):347–359. doi:10.1677/joe.1.06115

    Article  CAS  PubMed  Google Scholar 

  • Raucci F, Di Fiore MM (2010) The maturation of oocyte follicular epithelium of Podarcis s. sicula is promoted by d-aspartic acid. J Histochem Cytochem 58(2):157–171. doi:10.1369/jhc.2009.954636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raucci F, Di Fiore MM (2011) d-Asp: a new player in reproductive endocrinology of the amphibian Rana esculenta. J Chromatogr B Analyt Technol Biomed Life Sci 879(29):3268–3276. doi:10.1016/j.jchromb.2011.04.007

    Article  CAS  PubMed  Google Scholar 

  • Raucci F, Fiore MMD (2009) The reproductive activity in the testis of Podarcis s. sicula involves d-aspartic acid: a study on c-kit receptor protein, tyrosine kinase activity and PCNA protein during annual sexual cycle. Gen Comp Endocrinol 161(3):373–383. doi:10.1016/j.ygcen.2009.02.002

    Article  CAS  PubMed  Google Scholar 

  • Raucci F, Assisi L, D’Aniello S, Spinelli P, Botte V, Di Fiore MM (2004) Testicular endocrine activity is upregulated by d-aspartic acid in the green frog, Rana esculenta. J Endocrinol 182(2):365–376

    Article  CAS  PubMed  Google Scholar 

  • Raucci F, Santillo A, D’Aniello A, Chieffi P, Baccari GC (2005) d-aspartate modulates transcriptional activity in Harderian gland of frog, Rana esculenta: morphological and molecular evidence. J Cell Physiol 204(2):445–454. doi:10.1002/jcp.20316

    Article  CAS  PubMed  Google Scholar 

  • Reissner K, Aswad D (2003) Deamidation and isoaspartate formation in proteins: unwanted alterations or surreptitious signals? Cell Mol Life Sci 60(7):1281–1295

    Article  CAS  PubMed  Google Scholar 

  • Saitoh Y, Katane M, Kawata T, Maeda K, Sekine M, Furuchi T, Kobuna H, Sakamoto T, Inoue T, Arai H, Nakagawa Y, Homma H (2012) Spatiotemporal localization of d-amino acid oxidase and d-aspartate oxidases during development in Caenorhabditis elegans. Mol Cell Biol 32(10):1967–1983. doi:10.1128/MCB.06513-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santillo A, Monteforte R, Raucci F, D’Aniello A, Baccari GC (2006) Occurrence of d-aspartate in the harderian gland of Podarcis s. sicula and its effect on gland secretion. J Exp Zool A Comp Exp Biol 305A(8):610–619. doi:10.1002/jez.a.301

    Article  CAS  Google Scholar 

  • Santillo A, Pinelli C, Burrone L, Chieffi Baccari G, Di Fiore MM (2013) d-aspartic acid implication in the modulation of frog brain sex steroid levels. Gen Comp Endocrinol 181:72–76. doi:10.1016/j.ygcen.2012.11.003

    Article  CAS  PubMed  Google Scholar 

  • Saunders NR, Daneman R, Dziegielewska KM, Liddelow SA (2013) Transporters of the blood-brain and blood-CSF interfaces in development and in the adult. Mol Aspects Med 34(2–3):742–752. doi:10.1016/j.mam.2012.11.006

    Article  CAS  PubMed  Google Scholar 

  • Scanlan C, Shi T, Hatcher NG, Rubakhin SS, Sweedler JV (2010) Synthesis, accumulation, and release of d-aspartate in the Aplysia californica CNS. J Neurochem 115(5):1234–1244. doi:10.1111/j.1471-4159.2010.07020.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schell MJ, Cooper OB, Snyder SH (1997) d-aspartate localizations imply neuronal and neuroendocrine roles. Proc Natl Acad Sci U S A 94(5):2013–2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schieber A, Brückner H, Rupp-Classen M, Pecht W, Nowitzki-Gfimm S, Classen HG (1997) Evaluation of d-amino acid levels in rat by gas chromatography-selected ion monitoring mass spectrometry: no evidence for subacute toxicity of orally fed d-proline and d-aspartic acid. J Chromatogr B Biomed Sci Appl 691(1):1–12, http://dx.doi.org/10.1016/S0378-4347(96)00378-7

    Article  CAS  PubMed  Google Scholar 

  • Shibata K, Watanabe T, Yoshikawa H, Abe K, Takahashi S, Kera Y, Yamada RH (2003) Purification and characterization of aspartate racemase from the bivalve mollusk Scapharca broughtonii. Comp Biochem Physiol B: Biochem Mol Biol 134(2):307–314. doi:10.1016/s1096-4959(02)00267-1

    Article  Google Scholar 

  • Shikata Y, Watanabe T, Teramoto T, Inoue A, Kawakami Y, Nishizawa Y, Katayama K, Kuwada M (1995) Isolation and characterization of a peptide isomerase from funnel-web spider venom. J Biol Chem 270(28):16719–16723. doi:10.1074/jbc.270.28.16719

    Article  CAS  PubMed  Google Scholar 

  • Shinbo T, Yamaguchi T, Nishimura K, Sugiura M (1987) Chromatographic separation of racemic amino acids by use of chiral crown ether-coated reversed-phase packings. J Chromatogr 405:145–153, http://dx.doi.org/10.1016/S0021-9673(01)81756-8

    Article  CAS  PubMed  Google Scholar 

  • Simo C, Rizzi A, Barbas C, Cifuentes A (2005) Chiral capillary electrophoresis-mass spectrometry of amino acids in foods. Electrophoresis 26(7–8):1432–1441. doi:10.1002/elps.200406199

    Article  CAS  PubMed  Google Scholar 

  • Skoog DA, Holler FJ, Crouch SR (2007) Principles of instrumental analysis, 6th edn. Thomson Brooks/Cole, Belmont

    Google Scholar 

  • Song Y, Liang F, Liu Y-M (2007) Quantification of d-amino acids in the central nervous system of Aplysia californica by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 21(1):73–77. doi:10.1002/rcm.2803

    Article  PubMed  CAS  Google Scholar 

  • Song Y, Feng Y, Lu X, Zhao S, Liu CW, Liu YM (2008) d-amino acids in rat brain measured by liquid chromatography/tandem mass spectrometry. Neurosci Lett 445(1):53–57. doi:10.1016/j.neulet.2008.08.058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soustelle L, Besson MT, Rival T, Birman S (2002) Terminal glial differentiation involves regulated expression of the excitatory amino acid transporters in the Drosophila embryonic CNS. Dev Biol 248(2):294–306

    Article  CAS  PubMed  Google Scholar 

  • Spinelli P, Brown ER, Ferrandino G, Branno M, Montarolo PG, D’Aniello E, Rastogi RK, D’Aniello B, Baccari GC, Fisher G, D’Aniello A (2006) d-aspartic acid in the nervous system of Aplysia limacina: possible role in neurotransmission. J Cell Physiol 206(3):672–681. doi:10.1002/jcp.20513

    Article  CAS  PubMed  Google Scholar 

  • Stephenson RC, Clarke S (1989) Succinimide formation from aspartyl and asparaginyl peptides as a model for the spontaneous degradation of proteins. J Biol Chem 264(11):6164–6170

    CAS  PubMed  Google Scholar 

  • Stevens BR (2010) Amino acid transport by epithelial membranes. In: Gerencser GA (ed) Epithelial transport physiology. Humana Press, Totowa, NJ, pp 353–378. doi:10.1007/978-1-60327-229-2_15

    Google Scholar 

  • Still JL, Buell MV, Knox WE, Green DE (1949) Studies on the cyclophorase system; d-aspartic oxidase. J Biol Chem 179(2):831–837

    CAS  PubMed  Google Scholar 

  • Swartz ME, Mazzeo JR, Grover ER, Brown PR (1995) Separation of amino acid enantiomers by micellar electrokinetic capillary chromatography using synthetic chiral surfactants. Anal Biochem 231(1):65–71, http://dx.doi.org/10.1006/abio.1995.1504

    Article  CAS  PubMed  Google Scholar 

  • Takahashi O (2014) Just three water molecules can trigger the undesired nonenzymatic reactions of aspartic acid residues: new insight from a quantum-chemical study. J Phys Conf Ser 490:012147. doi:10.1088/1742-6596/490/1/012147

    Article  CAS  Google Scholar 

  • Takigawa Y, Homma H, Lee JA, Fukushima T, Santa T, Iwatsubo T, Imai K (1998) d-aspartate uptake into cultured rat pinealocytes and the concomitant effect on l-aspartate levels and melatonin secretion. Biochem Biophys Res Commun 248(3):641–647. doi:10.1006/bbrc.1998.8971

    Article  CAS  PubMed  Google Scholar 

  • Terabe S, Shibata M, Miyashita Y (1989) Chiral separation by electronkinetic chromatography while bile salt micelles. J Chromatogr 480:403–411, http://dx.doi.org/10.1016/S0021-9673(01)84309-0

    Article  CAS  Google Scholar 

  • Tivesten A, Lundqvist A, Folestad S (1997) Selective chiral determination of aspartic and glutamic acid in biological samples by capillary electrophoresis. Chromatographia 44(11–12):623–633. doi:10.1007/Bf02466666

    Article  CAS  Google Scholar 

  • Topo E, Soricelli A, Di Maio A, D’Aniello E, Di Fiore MM, D’Aniello A (2010) Evidence for the involvement of d-aspartic acid in learning and memory of rat. Amino Acids 38(5):1561–1569. doi:10.1007/s00726-009-0369-x

    Article  CAS  PubMed  Google Scholar 

  • Tsesarskaia M, Galindo E, Szókán G, Fisher G (2009) HPLC determination of acidic d-amino acids and their N-methyl derivatives in biological tissues. Biomed Chromatogr 23(6):581–587. doi:10.1002/bmc.1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tverdislov VA, Yakovenko LV, Ivlieva AA, Tverdislova IL (2011) Ionic and chiral asymmetries as physical factors of biogenesis and ontogenesis. Mosc U Phys B+ 66(2):105–115. doi:10.3103/S0027134911020184

    Article  Google Scholar 

  • Ueda T, Kitamura F, Mitchell R, Metcalf T, Kuwana T, Nakamoto A (1991) Chiral separation of naphthalene-2,3-dicarboxaldehyde-labeled amino acid enantiomers by cyclodextrin-modified micellar electrokinetic chromatography with laser-induced fluorescence detection. Anal Chem 63(24):2979–2981. doi:10.1021/ac00024a033

    Article  CAS  Google Scholar 

  • Umesh A, Cohen BN, Ross LS, Gill SS (2003) Functional characterization of a glutamate/aspartate transporter from the mosquito Aedes aegypti. J Exp Biol 206(Pt 13):2241–2255

    Article  CAS  PubMed  Google Scholar 

  • Villar-Cerviño V, Barreiro-Iglesias A, Rodicio MC, Anadón R (2010) d-serine is distributed in neurons in the brain of the sea lamprey. J Comp Neurol 518(10):1688–1710. doi:10.1002/cne.22296

    Article  PubMed  CAS  Google Scholar 

  • Waldhier MC, Dettmer K, Gruber MA, Oefner PJ (2010) Comparison of derivatization and chromatographic methods for GC–MS analysis of amino acid enantiomers in physiological samples. J Chromatogr B Analyt Technol Biomed Life Sci 878(15–16):1103–1112, http://dx.doi.org/10.1016/j.jchromb.2010.03.021

    Article  CAS  PubMed  Google Scholar 

  • Waldhier MC, Almstetter MF, Nürnberger N, Gruber MA, Dettmer K, Oefner PJ (2011) Improved enantiomer resolution and quantification of free d-amino acids in serum and urine by comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry. J Chromatogr 1218(28):4537–4544, http://dx.doi.org/10.1016/j.chroma.2011.05.039

    Article  CAS  Google Scholar 

  • Wan H, Blomberg LG (2000) Chiral separation of amino acids and peptides by capillary electrophoresis. J Chromatogr 875(1–2):43–88, http://dx.doi.org/10.1016/S0021-9673(99)01209-1

    Article  CAS  Google Scholar 

  • Wang LP, Ota N, Romanova EV, Sweedler JV (2011) A novel pyridoxal 5′-phosphate-dependent amino acid racemase in the Aplysia californica central nervous system. J Biol Chem 286(15):13765–13774. doi:10.1074/jbc.M110.178228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welch CJ (1994) Evolution of chiral stationary phase design in the Pirkle laboratories. J Chromatogr 666(1–2):3–26, http://dx.doi.org/10.1016/0021-9673(94)80367-6

    Article  CAS  Google Scholar 

  • Yamamoto A, Tanaka H, Ishida T, Horiike K (2011) Immunohistochemical localization of d-aspartate oxidase in porcine peripheral tissues. Amino Acids 41(2):529–536. doi:10.1007/s00726-010-0785-y

    Article  CAS  PubMed  Google Scholar 

  • Yamane H, Tsuneyoshi Y, Denbow DM, Furuse M (2009) N-methyl-d-aspartate and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors involved in the induction of sedative effects under an acute stress in neonatal chicks. Amino Acids 37(4):733–739. doi:10.1007/s00726-008-0203-x

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Chen CJ, Liu X, Shi J, Wang GA, Zhu LD, Guo LP, Glennon JD, Scully NM, Doherty BE (2010) Use of cyclodextrin-modified gold nanoparticles for enantioseparations of drugs and amino acids based on pseudostationary phase-capillary electrochromatography. Electrophoresis 31(10):1697–1705. doi:10.1002/elps.200900541

    Article  CAS  PubMed  Google Scholar 

  • Zaar K (1996) Light and electron microscopic localization of d-aspartate oxidase in peroxisomes of bovine kidney and liver: an immunocytochemical study. J Histochem Cytochem 44(9):1013–1019. doi:10.1177/44.9.8773567

    Article  CAS  PubMed  Google Scholar 

  • Zaar K, Köst H-P, Schad A, Völkl A, Baumgart E, Fahimi HD (2002) Cellular and subcellular distribution of d-aspartate oxidase in human and rat brain. J Comp Neurol 450(3):272–282. doi:10.1002/cne.10320

    Article  CAS  PubMed  Google Scholar 

  • Zampolli MG, Basaglia G, Dondi F, Sternberg R, Szopa C, Pietrogrande MC (2007) Gas chromatography–mass spectrometry analysis of amino acid enantiomers as methyl chloroformate derivatives: application to space analysis. J Chromatogr 1150(1–2):162–172. http://dx.doi.org/10.1016/j.chroma.2006.12.033

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation (NSF), Division of Chemistry, under grant CHE-11-11705 (with co-funding from the Division of Biological Infrastructure), by Award No. RO1 NS031609 from the National Institute of Neurological Disorders and Stroke (NINDS) and Award Number P30 DA018310 from the National Institute on Drug Abuse (NIDA). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NSF, NINDS, NIDA, or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan V. Sweedler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Patel, A.V., Kawai, T., Rubakhin, S.S., Sweedler, J.V. (2016). Free d-Aspartate in Nonmammalian Animals: Detection, Localization, Metabolism, and Function. In: Yoshimura, T., Nishikawa, T., Homma, H. (eds) D-Amino Acids. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56077-7_12

Download citation

Publish with us

Policies and ethics