Skip to main content

Vulnerability and Exposure to Geomorphic Hazards: Some Insights from the European Alps

  • Chapter
  • First Online:
Geomorphology and Society

Part of the book series: Advances in Geographical and Environmental Sciences ((AGES))

Abstract

Geomorphological processes and society are connected through a diverse set of relationships and feedbacks. One of the main connections concerns the impact of hazardous geomorphic processes on society that lead to economic and life losses. Due to the extent of geomorphological activity in mountain regions, and the considerable proportion of these that are occupied and used by people, mountains are a particular focus in geohazard and interdisciplinary risk research. Taking the European Alps as an example, a short overview indicates the fundamentals of mountain hazard processes and highlights trends in the number of different hazard types in Austria. Climate and environmental change as well as their influence on mountain hazard processes are discussed with a focus on the cryosphere and hydrosphere. Key issues in developing a more thorough understanding of increasing losses and future risk are exposure and vulnerability. Initial insights on exposure are provided by an analysis of the past evolution and current situation in the context of spatial and temporal distribution of values at risk; this is illustrated with reference to Austria. The importance of vulnerability for risk reduction is internationally acknowledged but somewhat less studied and, indeed, seems to be hidden between the different foci of disciplines. Innovative methods for vulnerability analysis (documentation, vulnerability curves) are presented contributing to close this gap. Overall, mountain hazard research highlights the importance of connecting geomorphology and the socio-economy in order to contribute to the most challenging questions of more sustainable societies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    To identify hazard zones, defined design events are used to estimate the spatial range and pressure distribution of the hazard processes. The methodologies applied therefore differ slightly between the Alpine countries, but the principle for drawing up hazard maps is similar; as described below for snow avalanche hazards in Austria (Republik Österreich 1975, 1976). In Austria, red colour on avalanche hazard maps indicates areas where the expected pressure from avalanches with recurrence intervals T = 150 years exceeds a limit >10 kPa/m2. Yellow colour indicates areas where pressure from avalanches with recurrence intervals T = 150 years is >1 kPa/m2 and <10 kPa/m2. Inside red areas, the construction of new buildings is usually hindered, in some Federal States also legally forbidden. In yellow areas, particular regulations have to be considered with regard to the expected avalanche pressure, such as the reinforcement of walls on the hill side of a building (see also Holub and Fuchs (2009) as well as Keiler and Fuchs (2010) for a related in-depth discussion).

References

  • Akbas S, Blahut J, Sterlacchini S (2009) Critical assessment of existing physical vulnerability estimation approaches for debris flows. In: Malet J, Remaître A, Bogaard T (eds) Landslide processes: from geomorphological mapping to dynamic modelling. CERG Editions, Strasbourgh, pp 229–233

    Google Scholar 

  • Alger C, Brabb E (2001) The development and application of a historical bibliography to assess landslide hazard in the United States. In: Glade T, Albini P, Francés F (eds) The use of historical data in natural hazard assessments. Kluwer, Dordrecht, pp 185–199

    Chapter  Google Scholar 

  • APCC (ed) (2014) Österreichischer Sachstandsbericht Klimawandel 2014. Verlag der Österreichischen Akademie der Wissenschaften, Wien

    Google Scholar 

  • Apel H, Aronica G, Kreibich H, Thieken A (2009) Flood risk analyses – how detailed do we need to be? Nat Hazards 49(1):79–98

    Article  Google Scholar 

  • Auer I, Böhm R, Jurkovic A, Lipa W, Orlik A, Potzmann R, Schöner W, Ungersböck M, Matulla C, Briffa K, Jones P, Efthymiadis D, Brunetti M, Nanni T, Maugeri M, Mercalli L, Mestre O, Moisselin J-M, Begert M, Müller-Westermeier G, Kveton V, Bochnicek O, Stastny P, Lapin M, Szalai S, Szentimrey T, Cegnar T, Dolinar M, Gajic-Capka M, Zaninovic K, Majstorovic Z, Nieplova E (2007) HISTALP – historical instrumental climatological surface time series of the Greater Alpine Region. Int J Climatol 27(1):17–46

    Article  Google Scholar 

  • Baggi S, Schweizer J (2009) Characteristics of wet-snow avalanche activity: 20 years of observations from a high alpine valley (Dischma, Switzerland). Nat Hazards 50(1):97–108

    Article  Google Scholar 

  • Beniston M (2003) Climatic change in mountain regions: a review of possible impacts. Clim Chang 59(1–2):5–31

    Article  Google Scholar 

  • Bezzola G, Hegg C (eds) (2007) Ereignisanalyse Hochwasser 2005, Teil 1 – Prozesse, Schäden und erste Einordnung. Bundesamt für Umwelt BAFU, Eidgenössische Forschungsanstalt WSL, Bern und Birmensdorf

    Google Scholar 

  • Birkmann J, Cardona OM, Carreño ML, Barbat AH, Pelling M, Schneiderbauer S, Kienberger S, Keiler M, Alexander D, Zeil P, Welle T (2013) Framing vulnerability, risk and societal responses: the MOVE framework. Nat Hazards 67(2):193–211

    Article  Google Scholar 

  • Blöchl A, Braun B (2005) Economic assessment of landslide risks in the Swabian Alb, Germany – research framework and first results of homeowner’s and experts’ surveys. Nat Hazards Earth Syst Sci 5(3):389–396

    Article  Google Scholar 

  • Bründl M, Romang H, Bischof N, Rheinberger C (2009) The risk concept and its application in natural hazard risk management in Switzerland. Nat Hazards Earth Syst Sci 9(3):801–813

    Article  Google Scholar 

  • Bründl M, Bartelt P, Schweizer J, Keiler M, Glade T (2010) Review and future challenges in snow avalanche risk analysis. In: Alcántara-Ayala I, Goudie A (eds) Geomorphological hazards and disaster prevention. Cambridge University Press, Cambridge, pp 49–61

    Chapter  Google Scholar 

  • Brunetti M, Lentini G, Maugeri M, Nanni T, Auer I, Böhm R, Schöner W (2009) Climate variability and change in the Greater Alpine Region over the last two centuries based on multivariable analysis. Int J Climatol 29(15):2197–2225

    Article  Google Scholar 

  • Callaghan TV, Johansson M, Brown RD, Groisman PY, Labba N, Radionov V, Barry RG, Blangy S, Bradley RS, Bulygina ON, Christensen TR, Colman J, Essery RLH, Forbes B, Forchhammer MC, Frolov DM, Golubev VN, Grenfell TC, Honrath RE, Juday GP, Melloh R, Meshcherskaya AV, Petrushina MN, Phoenix GK, Pomeroy J, Rautio A, Razuvaev VN, Robinson DA, Romanov P, Schmidt NM, Serreze MC, Shevchenko V, Shiklomanov A, Shindell D, Shmakin AB, Sköld P, Sokratov SA, Sturm M, Warren S, Woo M-K, Wood EF, Yang D (2011) Changing snow cover and its impacts. In: AMAP (ed) Snow, water, ice and permafrost in the Arctic (SWIPA): climate change and the cryosphere. Arctic Monitoring and Assessment Programme, Oslo, p 4.1–4.58

    Google Scholar 

  • Calvo B, Savi F (2009) A real-world application of Monte Carlo procedure for debris flow risk assessment. Comput Geosci 35(5):967–977

    Article  Google Scholar 

  • CRED [Centre for Research on the Epidemiology of Disasters] (2014) The OFDA/CRED international disaster database EM-DAT. Université Catholique de Louvain, Brussels. www.emdat.net. Accessed 1 Dec 2014

  • Crozier M (1999) The frequency and magnitude of geomorphic processes and landform behaviour. Z Geomorphol NF Suppl Bd 115:35–50

    Google Scholar 

  • Diffenbaugh NS, Scherer M, Ashfaq M (2013) Response of snow-dependent hydrologic extremes to continued global warming. Nat Clim Chang 3(4):379–384

    Article  Google Scholar 

  • Eckert N, Parent E, Kies R, Baya H (2010) A spatio-temporal modelling framework for assessing the fluctuations of avalanche occurrence resulting from climate change: application to 60 years of data in the Northern French Alps. Clim Chang 101(3):515–553

    Article  Google Scholar 

  • EEA (ed) (2012) Climate change, impacts and vulnerability in Europe 2012. Office for Official Publications of the European Union, Luxembourg

    Google Scholar 

  • Eisbacher G, Clague J (1984) Destructive mass movements in high mountains: hazard and management, vol paper 84–16. Geological Survey of Canada, Ottawa

    Google Scholar 

  • Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage W (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning. Eng Geol 102(3–4):85–98

    Article  Google Scholar 

  • Field CB, Barros V, Stocker TF, Dahe Q, Dokken DJ, Plattner G-K, Ebi KL, Allen SK, Mastrandrea MD, Tignor M, Mach KJ, Midgley PM (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. Special report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Foelsche U (2005) Regionale Entwicklung und Auswirkungen extremer Wetterereignisse am Beispiel Österreich. In: Steininger K, Steinreiber C, Ritz C (eds) Extreme Wetterereignisse und ihre wirtschaftlichen Folgen. Springer, Berlin, pp 25–44

    Chapter  Google Scholar 

  • Fuchs S (2009) Susceptibility versus resilience to mountain hazards in Austria – paradigms of vulnerability revisited. Nat Hazards Earth Syst Sci 9(2):337–352

    Article  Google Scholar 

  • Fuchs S, Bründl M (2005) Damage potential and losses resulting from snow avalanches in settlements of the canton of Grisons, Switzerland. Nat Hazards 34(1):53–69

    Article  Google Scholar 

  • Fuchs S, Keiler M (2013) Space and time: coupling dimensions in natural hazard risk management? In: Müller-Mahn D (ed) The spatial dimension of risk – how geography shapes the emergence of riskscapes. Earthscan, London, pp 189–201

    Google Scholar 

  • Fuchs S, Keiler M, Sokratov S (2015) Snow and avalanches. In: Huggel C, Carey M, Clague JJ, Kääb A (eds) The high-mountain cryosphere: environmental changes and human risks. Cambridge University Press, Cambridge, pp 50–70

    Chapter  Google Scholar 

  • Fuchs S, Heiss K, Hübl J (2007a) Towards an empirical vulnerability function for use in debris flow risk assessment. Nat Hazards Earth Syst Sci 7(5):495–506

    Article  Google Scholar 

  • Fuchs S, Thöni M, McAlpin MC, Gruber U, Bründl M (2007b) Avalanche hazard mitigation strategies assessed by cost effectiveness analyses and cost benefit analyses – evidence from Davos, Switzerland. Nat Hazards 41(1):113–129

    Article  Google Scholar 

  • Fuchs S, Kuhlicke C, Meyer V (2011) Editorial for the special issue: vulnerability to natural hazards – the challenge of integration. Nat Hazards 58(2):609–619

    Article  Google Scholar 

  • Fuchs S, Ornetsmüller C, Totschnig R (2012) Spatial scan statistics in vulnerability assessment – an application to mountain hazards. Nat Hazards 64(3):2129–2151

    Article  Google Scholar 

  • Fuchs S, Keiler M, Sokratov SA, Shnyparkov A (2013) Spatiotemporal dynamics: the need for an innovative approach in mountain hazard risk management. Nat Hazards 68(3):1217–1241

    Article  Google Scholar 

  • Gibbs MT (2012) Time to re-think engineering design standards in a changing climate: the role of risk-based approaches. J Risk Res 12(7):711–716

    Article  Google Scholar 

  • Giles D (2013) Intensity scales. In: Bobrowsky P (ed) Encyclopedia of natural hazards. Springer, Dordrecht, pp 544–552

    Chapter  Google Scholar 

  • Greiving S, Fleischhauer M, Wanczura S (2006) Management of natural hazards in Europe: the role of spatial planning in selected EU member states. J Environ Plan Manag 49(5):739–757

    Article  Google Scholar 

  • Haeberli W (2013) Mountain permafrost – research frontiers and a special long-term challenge. Cold Reg Sci Technol 96:71–76

    Article  Google Scholar 

  • Hilker N, Badoux A, Hegg C (2009) The swiss flood and landslide damage database 1972–2007. Nat Hazards Earth Syst Sci 9(3):913–925

    Article  Google Scholar 

  • Holub M, Fuchs S (2009) Mitigating mountain hazards in Austria – legislation, risk transfer, and awareness building. Nat Hazards Earth Syst Sci 9(2):523–537

    Article  Google Scholar 

  • Huggel C, Clague J, Korup O (2012) Is climate change responsible for changing landslide activity in high mountains? Earth Surf Process Landf 37(1):77–91

    Article  Google Scholar 

  • Jakob M, Stein D, Ulmi M (2012) Vulnerability of buildings to debris flow impact. Nat Hazards 60(2):241–261

    Article  Google Scholar 

  • Kappes M, Keiler M, von Elverfeldt K, Glade T (2012a) Challenges of analyzing multi-hazard risk: a review. Nat Hazards 64(2):1925–1958

    Article  Google Scholar 

  • Kappes M, Papathoma-Köhle M, Keiler M (2012b) Assessing physical vulnerability for multi-hazards using an indicator-based methodology. Appl Geogr 32(2):577–590

    Article  Google Scholar 

  • Keiler M (2013) World-wide trends in natural disasters. In: Bobrowski P (ed) Encyclopedia of natural hazards. Springer, Dordrecht, pp 1111–1114

    Chapter  Google Scholar 

  • Keiler M, Fuchs S (2010) Berechnetes Risiko – Mit Sicherheit am Rande der Gefahrenzone. In: Egner H, Pott A (eds) Geographische Risikoforschung. Zur Konstruktion verräumlichter Risiken und Sicherheiten, Erdkundliches Wissen 147. Franz Steiner, Stuttgart, pp 51–68

    Google Scholar 

  • Keiler M, Zischg A, Fuchs S, Hama M, Stötter J (2005) Avalanche related damage potential – changes of persons and mobile values since the mid-twentieth century, case study Galtür. Nat Hazards Earth Syst Sci 5(1):49–58

    Article  Google Scholar 

  • Keiler M, Sailer R, Jörg P, Weber C, Fuchs S, Zischg A, Sauermoser S (2006) Avalanche risk assessment – a multi-temporal approach, results from Galtür, Austria. Nat Hazards Earth Syst Sci 6(4):637–651

    Article  Google Scholar 

  • Keiler M, Knight J, Harrison S (2010) Climate change and geomorphological hazards in the eastern European Alps. Philos Trans R Soc London, Ser A 368:2461–2479

    Article  Google Scholar 

  • Kilburn CRJ, Pasuto A (2003) Major risk from rapid, large-volume landslides in Europe. Geomorphology 54:3–9

    Article  Google Scholar 

  • Korup O, Görüm T, Hayakawa Y (2012) Without power? Landslide inventories in the face of climate change. Earth Surf Process Landf 37(1):92–99

    Article  Google Scholar 

  • Laternser M, Schneebeli M (2002) Temporal trend and spatial distribution of avalanche activity during the last 50 years in Switzerland. Nat Hazards 27(3):201–230

    Article  Google Scholar 

  • Löffler R, Steinicke E (2006) Counterurbanization and its socioeconomic effects in high mountain areas of the Sierra Nevada (California/Nevada). Mt Res Dev 26(1):64–71

    Article  Google Scholar 

  • Markantonis V, Meyer V, Schwarze R (2012) Valuating the intangible effects of natural hazards – review and analysis of the costing methods. Nat Hazards Earth Syst Sci 12(5):1633–1640

    Article  Google Scholar 

  • Mavrouli O, Fotopoulou S, Pitilakis K, Zuccaro G, Corominas J, Santo A, Cacace F, De Gregorio D, Di Crescenzo G, Foerster E, Ulrich T (2014) Recommendations for the quantitative analysis of landslide risk. Bull Eng Geol Environ 73(2):265–289

    Google Scholar 

  • Mazzorana B, Simoni S, Scherer C, Gems B, Fuchs S, Keiler M (2014) A physical approach on flood risk vulnerability of buildings. Hydrol Earth Syst Sci 18(9):3817–3836

    Article  Google Scholar 

  • Meng X, Zhao Q, Ji X, Yao J, Liu Y, Liu Z (2013) Study on the high mountain snowmelt runoff forecast system based on GIS technology. Int J Appl Environ Sci 8(10):1247–1256

    Google Scholar 

  • Merz B (2006) Hochwasserrisiken. Schweizerbart, Stuttgart

    Google Scholar 

  • Messerli B (2012) Global change and the world’s mountains. Mt Res Dev 32(S1):S55–S63

    Article  Google Scholar 

  • Munich R (2014) Topics Geo. Natural catastrophes 2013. Munich Reinsurance Company, München

    Google Scholar 

  • Nordregio (2004) Mountain areas in Europe: analysis of mountain areas in EU member states, acceding and other European countries. Final report, Stockholm

    Google Scholar 

  • Papathoma-Köhle M, Kappes M, Keiler M, Glade T (2011) Physical vulnerability assessment for alpine hazards: state of the art and future needs. Nat Hazards 58(2):645–680

    Article  Google Scholar 

  • Papathoma-Köhle M, Totschnig R, Keiler M, Glade T (2012) A new vulnerability function for debris flow – the importance of physical vulnerability assessment in alpine areas. In: Koboltschng G, Hübl J, Braun J (eds) Internationales symposion interpraevent. Internationale Forschungsgesellschaft Interpraevent, Klagenfurt, pp 1033–1043

    Google Scholar 

  • Papathoma-Köhle M, Zischg A, Fuchs S, Glade T, Keiler M (2015) Loss estimation for landslides in mountain areas – an integrated toolbox for vulnerability assessment and damage documentation. Environ Model Softw 63:156–169

    Article  Google Scholar 

  • Quan Luna B, Blahut J, van Westen C, Sterlacchini S, van Asch T, Akbas S (2011) The application of numerical debris flow modelling for the generation of physical vulnerability curves. Nat Hazards Earth Syst Sci 11(7):2047–2060

    Article  Google Scholar 

  • Republik Österreich (1975) Forstgesetz 1975. BGBl 440/1975

    Google Scholar 

  • Republik Österreich (1976) Verordnung des Bundesministers für Land- und Forstwirtschaft vom 30. Juli 1976 über die Gefahrenzonenpläne. BGBl 436/1976

    Google Scholar 

  • Sattler K, Keiler M, Zischg A, Schrott L (2011) On the connection between debris flow activity and permafrost degradation: a case study from the Schnalstal, South Tyrolean Alps, Italy. Permafr Periglac Process 22:254–265

    Article  Google Scholar 

  • Schröter D, Cramer W, Leemans R, Prentice I, Araújo M, Arnell N, Bondeau A, Bugmann H, Carter T, Gracia C, de la Vega-Leinert A, Erhard M, Ewert F, Glendining M, House J, Kankaanpää S, Klein R, Lavorel S, Lindner M, Metzger M, Meyer J, Mitchell T, Reginster I, Rounsevell M, Sabaté S, Sitch S, Smith B, Smith J, Smith P, Sykes M, Thonicke K, Thuiller W, Tuck G, Zaehle S, Zierl B (2005) Ecosystem service supply and vulnerability to global change in Europe. Science 310(5752):1333–1337

    Article  Google Scholar 

  • Seneviratne SI, Nicholls N, Easterling D, Goodess CM, Kanae S, Kossin J, Luo Y, Marengo J, McInnes K, Rahimi M, Reichstein M, Sorteberg A, Vera C, Zhang X (2012) Changes in climate extremes and their impacts on the natural physical environment. In: Field CB, Barros V, Stocker TF et al (eds) Managing the risks of extreme events and disasters to advance climate change adaptation. Special report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 109–230

    Chapter  Google Scholar 

  • Slaymaker O, Embleton-Hamann C (2009) Mountains. In: Slaymaker O, Spencer T, Embleton-Hamann C (eds) Geomorphology and global environmental change. Cambridge University Press, Cambridge, pp 37–70

    Chapter  Google Scholar 

  • Slaymaker O, Spencer T, Embleton-Hamann C (eds) (2009) Geomorphology and global environmental change. Cambridge University Press, Cambridge

    Google Scholar 

  • Steiner D, Pauling A, Nussbaumer SU, Nesje A, Luterbacher J, Wanner H, Zumbühl HJ (2008) Sensitivity of European glaciers to precipitation and temperature – two case studies. Clim Chang 90(4):413–441

    Article  Google Scholar 

  • Stewart IT (2009) Changes in snowpack and snowmelt runoff for key mountain regions. Hydrol Process 23(1):78–94

    Article  Google Scholar 

  • Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Totschnig R, Fuchs S (2013) Mountain torrents: quantifying vulnerability and assessing uncertainties. Eng Geol 155:31–44

    Article  Google Scholar 

  • Totschnig R, Sedlacek W, Fuchs S (2011) A quantitative vulnerability function for fluvial sediment transport. Nat Hazards 58(2):681–703

    Article  Google Scholar 

  • Tsao T-C, Hsu W-K, Cheng C-T, Lo W-C, Chen C-Y, Chang Y-L, Ju J-P (2010) A preliminary study of debris flow risk estimation and management in Taiwan. In: Chen S-C (ed) Internationales Symposion Interpraevent in the Pacific Rim. Internationale Forschungsgesellschaft Interpraevent, Klagenfurt, pp 930–939

    Google Scholar 

  • UN (ed) (2002) Guidelines for reducing flood losses. United Nations, Geneva

    Google Scholar 

  • UN General Assembly (1989) International decade for natural disaster reduction. United Nations General Assembly Resolution 236 session 44 of 22 December 1989. A-RES-44-236

    Google Scholar 

  • UN General Assembly (1998) International year of mountains 2002. United Nations General Assembly Resolution session 53 of 10 November 1998. A-RES-53-24

    Google Scholar 

  • UNDRO (1982) Natural disasters and vulnerability analysis. Office of the United Nations Disaster Relief Co-ordinator, Geneva

    Google Scholar 

  • Uzielli M, Nadim F, Lacasse S, Kaynia A (2008) A conceptual framework for quantitative estimation of physical vulnerability to landslides. Eng Geol 102(3–4):251–256

    Article  Google Scholar 

  • van Westen C, van Asch TWJ, Soeters R (2006) Landslide hazard and risk zonation – why is it still so difficult? Bull Eng Geol Environ 65(2):167–184

    Article  Google Scholar 

  • Varnes D (1984) Landslide hazard zonation: a review of principles and practice, vol 3. Natural hazards. UNESCO, Paris

    Google Scholar 

  • WMO (ed) (1999) Comprehensive risk assessment for natural hazards, vol technical document, no. 955. World Meteorological Organisation, Geneva

    Google Scholar 

  • Zischg A, Fuchs S, Keiler M, Stötter J (2005) Temporal variability of damage potential on roads as a conceptual contribution towards a short-term avalanche risk simulation. Nat Hazards Earth Syst Sci 5(2):235–242

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margreth Keiler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Keiler, M., Fuchs, S. (2016). Vulnerability and Exposure to Geomorphic Hazards: Some Insights from the European Alps. In: Meadows, M., Lin, JC. (eds) Geomorphology and Society. Advances in Geographical and Environmental Sciences. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56000-5_10

Download citation

Publish with us

Policies and ethics