Skip to main content

Modeling Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy with Patient-Specific iPSCs

  • Chapter
  • First Online:
Human iPS Cells in Disease Modelling

Abstract

Cellular reprogramming of somatic cells from cardiac patients to induced pluripotent stem cells (iPSCs) enables in vitro modeling of human genetic disorders for pathogenic investigations and therapeutic screens. However, using iPSC-derived cardiomyocytes (iPSC-CMs) to model an adult-onset heart disease remains challenging due to the uncertainty regarding the ability of relatively immature iPSC-CMs to fully recapitulate adult disease phenotypes. Arrhythmogenic right ventricular dysplasia (ARVD) is an inherited cardiomyopathy characterized by pathological fibrofatty infiltration and cardiomyocyte (CM) loss predominantly in the right ventricle (RV), leading to life-threatening ventricular arrhythmias. Over 50 % of affected individuals have desmosome gene mutations, most commonly in PKP2 encoding plakophilin-2. The median age at presentation of ARVD is 26–30 years. We used Yamanaka’s pluripotent factors to generate iPSC lines from two ARVD patients with PKP2 mutations. We first developed a method to induce metabolic maturation of iPSC-CMs and showed that induction of adult-like/fatty acid dominant energetics from an embryonic/glycolytic state is essential to model an adult-onset cardiac disease using patient-specific iPSC-CMs. Furthermore, we demonstrate that coactivation of normal peroxisome proliferator-activated receptor-alpha (PPARα) and abnormal PPARγ pathways led to aggressive lipogenesis, elevated apoptosis, and defective intracellular calcium handling in ARVD iPSC-CMs, recapitulating the pathological signatures of ARVD. PPARγ antagonists rescued all ARVD pathological phenotypes and reactive oxygen species (ROS) scavengers curtailed CM apoptosis in our ARVD in vitro model. Thus, using this model, we revealed novel pathogenic insights that metabolic derangement in an adult-like metabolic milieu underlies ARVD pathologies, enabling us to test novel disease-modifying therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asimaki A, Tandri H, Huang H, Halushka MK, Gautam S, Basso C, Thiene G, Tsatsopoulou A, Protonotarios N, McKenna WJ, Calkins H, Saffitz JE (2009) A new diagnostic test for arrhythmogenic right ventricular cardiomyopathy. N Engl J Med 360(11):1075–1084

    Article  CAS  PubMed  Google Scholar 

  • Awad MM, Dalal D, Tichnell C, James C, Tucker A, Abraham T, Spevak PJ, Calkins H, Judge DP (2006) Recessive arrhythmogenic right ventricular dysplasia due to novel cryptic splice mutation in PKP2. Hum Mutat 27(11):1157

    Article  PubMed  PubMed Central  Google Scholar 

  • Awad MM, Calkins H, Judge DP (2008) Mechanisms of disease: molecular genetics of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Nat Clin Pract Cardiovasc Med 5(5):258–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basso C, Bauce B, Corrado D, Thiene G (2012) Pathophysiology of arrhythmogenic cardiomyopathy. Nat Rev Cardiol 9(4):223–233

    Article  CAS  Google Scholar 

  • Basso C, Pilichou K, Thiene G (2013) Is it time for plakoglobin immune-histochemical diagnostic test for arrhythmogenic cardiomyopathy in the routine pathology practice? Cardiovasc Pathol 22(5):312–313

    Article  PubMed  Google Scholar 

  • Brasaemle DL (2007) Thematic review series: adipocyte biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J Lipid Res 48(12):2547–2559

    Article  CAS  PubMed  Google Scholar 

  • Cai CL, Liang X, Shi Y, Chu PH, Pfaff SL, Chen J, Evans S (2003) Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 5(6):877–889

    Article  CAS  PubMed  Google Scholar 

  • Calkins H (2015) Arrhythmogenic right ventricular dysplasia/cardiomyopathy- three decades of progress. Circ J 79(5):901–913

    Article  PubMed  Google Scholar 

  • Carvajal-Vergara X, Sevilla A, D’Souza SL, Ang YS, Schaniel C, Lee DF, Yang L, Kaplan AD, Adler ED, Rozov R, Ge Y, Cohen N, Edelmann LJ, Chang B, Waghray A, Su J, Pardo S, Lichtenbelt KD, Tartaglia M, Gelb BD, Lemischka IR (2010) Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature 465(7299):808–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerrone M, Lin X, Zhang M, Agullo-Pascual E, Pfenniger A, Chkourko Gusky H, Novelli V, Kim C, Tirasawadichai T, Judge DP, Rothenberg E, Chen HS, Napolitano C, Priori SG, Delmar M (2014) Missense mutations in plakophilin-2 cause sodium current deficit and associate with a Brugada syndrome phenotype. Circulation 129(10):1092–1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakravarthy MV, Lodhi IJ, Yin L, Malapaka RR, Xu HE, Turk J, Semenkovich CF (2009) Identification of a physiologically relevant endogenous ligand for PPARalpha in liver. Cell 138(3):476–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen HS, Kim C, Mercola M (2009) Electrophysiological challenges of cell-based myocardial repair. Circulation 120(24):2496–2508

    Article  PubMed  PubMed Central  Google Scholar 

  • Dalal D, Molin LH, Piccini J, Tichnell C, James C, Bomma C, Prakasa K, Towbin JA, Marcus FI, Spevak PJ, Bluemke DA, Abraham T, Russell SD, Calkins H, Judge DP (2006) Clinical features of arrhythmogenic right ventricular dysplasia/cardiomyopathy associated with mutations in plakophilin-2. Circulation 113(13):1641–1649

    Article  CAS  PubMed  Google Scholar 

  • den Haan AD, Tan BY, Zikusoka MN, Llado LI, Jain R, Daly A, Tichnell C, James C, Amat-Alarcon N, Abraham T, Russell SD, Bluemke DA, Calkins H, Dalal D, Judge DP (2009) Comprehensive desmosome mutation analysis in north Americans with arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circ Cardiovasc Genet 2(5):428–435

    Article  PubMed Central  Google Scholar 

  • Djouadi F, Lecarpentier Y, Hebert JL, Charron P, Bastin J, Coirault C (2009) A potential link between peroxisome proliferator-activated receptor signalling and the pathogenesis of arrhythmogenic right ventricular cardiomyopathy. Cardiovasc Res 84(1):83–90

    Article  CAS  PubMed  Google Scholar 

  • Ferrick DA, Neilson A, Beeson C (2008) Advances in measuring cellular bioenergetics using extracellular flux. Drug Discov Today 13(5–6):268–274

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Gras E, Lombardi R, Giocondo MJ, Willerson JT, Schneider MD, Khoury DS, Marian AJ (2006) Suppression of canonical Wnt/beta-catenin signaling by nuclear plakoglobin recapitulates phenotype of arrhythmogenic right ventricular cardiomyopathy. J Clin Invest 116(7):2012–2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Judd SE, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Mackey RH, Magid DJ, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER 3rd, Moy CS, Mussolino ME, Neumar RW, Nichol G, Pandey DK, Paynter NP, Reeves MJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Wong ND, Woo D, Turner MB (2014) Heart disease and stroke statistics- 2014 update: a report from the American Heart Association. Circulation 129(3):e28–e292

    Article  PubMed  Google Scholar 

  • Gregoire FM, Smas CM, Sul HS (1998) Understanding adipocyte differentiation. Physiol Rev 78(3):783–809

    CAS  PubMed  Google Scholar 

  • Itzhaki I, Maizels L, Huber I, Zwi-Dantsis L, Caspi O, Winterstern A, Feldman O, Gepstein A, Arbel G, Hammerman H, Boulos M, Gepstein L (2011) Modelling the long QT syndrome with induced pluripotent stem cells. Nature 471(7337):225–229

    Article  CAS  PubMed  Google Scholar 

  • Kim C, Majdi M, Xia P, Wei KA, Talantova M, Spiering S, Nelson B, Mercola M, Chen HS (2010) Non-cardiomyocytes influence the electrophysiological maturation of human embryonic stem cell-derived cardiomyocytes during differentiation. Stem Cells Dev 19(6):783–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim C, Wong J, Wen J, Wang S, Wang C, Spiering S, Kan NG, Forcales S, Puri PL, Leone TC, Marine JE, Calkins H, Kelly DP, Judge DP, Chen HS (2013) Studying arrhythmogenic right ventricular dysplasia with patient-specific iPSCs. Nature 494(7435):105–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knollmann BC (2013) Induced pluripotent stem cell-derived cardiomyocytes: boutique science or valuable arrhythmia model? Circ Res 112(6):969–976; discussion 976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li D, Liu Y, Maruyama M, Zhu W, Chen H, Zhang W, Reuter S, Lin SF, Haneline LS, Field LJ, Chen PS, Shou W (2011) Restrictive loss of plakoglobin in cardiomyocytes leads to arrhythmogenic cardiomyopathy. Hum Mol Genet 20(23):4582–4596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lombardi R, Dong J, Rodriguez G, Bell A, Leung TK, Schwartz RJ, Willerson JT, Brugada R, Marian AJ (2009) Genetic fate mapping identifies second heart field progenitor cells as a source of adipocytes in arrhythmogenic right ventricular cardiomyopathy. Circ Res 104(9):1076–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90(1):207–258

    Article  CAS  PubMed  Google Scholar 

  • Macfarlane DP, Forbes S, Walker BR (2008) Glucocorticoids and fatty acid metabolism in humans: fuelling fat redistribution in the metabolic syndrome. J Endocrinol 197(2):189–204

    Article  CAS  PubMed  Google Scholar 

  • Marcus FI, Fontaine GH, Guiraudon G, Frank R, Laurenceau JL, Malergue C, Grosgogeat Y (1982) Right ventricular dysplasia: a report of 24 adult cases. Circulation 65(2):384–398

    Article  CAS  PubMed  Google Scholar 

  • Marcus FI, McKenna WJ, Sherrill D, Basso C, Bauce B, Bluemke DA, Calkins H, Corrado D, Cox MG, Daubert JP, Fontaine G, Gear K, Hauer R, Nava A, Picard MH, Protonotarios N, Saffitz JE, Sanborn DM, Steinberg JS, Tandri H, Thiene G, Towbin JA, Tsatsopoulou A, Wichter T, Zareba W (2010) Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the Task Force Criteria. Eur Heart J 31(7):806–814

    Article  PubMed  PubMed Central  Google Scholar 

  • Marfella R, Portoghese M, Ferraraccio F, Siniscalchi M, Babieri M, Di Filippo C, D’Amico M, Rossi F, Paolisso G (2009) Thiazolidinediones may contribute to the intramyocardial lipid accumulation in diabetic myocardium: effects on cardiac function. Heart (Br Card Soc) 95(12):1020–1022

    Article  CAS  Google Scholar 

  • Mercola M, Colas A, Willems E (2013) Induced pluripotent stem cells in cardiovascular drug discovery. Circ Res 112(3):534–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moretti A, Bellin M, Welling A, Jung CB, Lam JT, Bott-Flugel L, Dorn T, Goedel A, Hohnke C, Hofmann F, Seyfarth M, Sinnecker D, Schomig A, Laugwitz KL (2010) Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med 363(15):1397–1409

    Article  CAS  PubMed  Google Scholar 

  • Moretti A, Laugwitz KL, Dorn T, Sinnecker D, Mummery C (2013) Pluripotent stem cell models of human heart disease. Cold Spring Harb Perspect Med 3(11):1–20

    Google Scholar 

  • Murry CE, Reinecke H, Pabon LM (2006) Regeneration gaps: observations on stem cells and cardiac repair. J Am Coll Cardiol 47(9):1777–1785

    Google Scholar 

  • Neubauer S (2007) The failing heart – an engine out of fuel. N Engl J Med 356(11):1140–1151

    Article  PubMed  Google Scholar 

  • Okano H, Nakamura M, Yoshida K, Okada Y, Tsuji O, Nori S, Ikeda E, Yamanaka S, Miura K (2013) Steps toward safe cell therapy using induced pluripotent stem cells. Circ Res 112(3):523–533

    Article  CAS  PubMed  Google Scholar 

  • Onay-Besikci A (2006) Regulation of cardiac energy metabolism in newborn. Mol Cell Biochem 287(1–2):1–11

    Article  CAS  PubMed  Google Scholar 

  • Park IH, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, Lensch MW, Cowan C, Hochedlinger K, Daley GQ (2008) Disease-specific induced pluripotent stem cells. Cell 134(5):877–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pettinelli P, Videla LA (2011) Up-regulation of PPAR-gamma mRNA expression in the liver of obese patients: an additional reinforcing lipogenic mechanism to SREBP-1c induction. J Clin Endocrinol Metab 96(5):1424–1430

    Article  CAS  PubMed  Google Scholar 

  • Qyang Y, Martin-Puig S, Chiravuri M, Chen S, Xu H, Bu L, Jiang X, Lin L, Granger A, Moretti A, Caron L, Wu X, Clarke J, Taketo MM, Laugwitz KL, Moon RT, Gruber P, Evans SM, Ding S, Chien KR (2007) The renewal and differentiation of Isl1+ cardiovascular progenitors are controlled by a Wnt/beta-catenin pathway. Cell Stem Cell 1(2):165–179

    Article  CAS  PubMed  Google Scholar 

  • Razani B, Zhang H, Schulze PC, Schilling JD, Verbsky J, Lodhi IJ, Topkara VK, Feng C, Coleman T, Kovacs A, Kelly DP, Saffitz JE, Dorn GW 2nd, Nichols CG, Semenkovich CF (2011) Fatty acid synthase modulates homeostatic responses to myocardial stress. J Biol Chem 286(35):30949–30961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santostefano KE, Hamazaki T, Biel NM, Jin S, Umezawa A, Terada N (2015) A practical guide to induced pluripotent stem cell research using patient samples. Lab Invest 95(1):4–13

    Article  CAS  PubMed  Google Scholar 

  • Sawant AC, Calkins H (2015) Sports in patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy and desmosomal mutations. Herz 40(3):402–409

    Article  CAS  PubMed  Google Scholar 

  • Shiba Y, Fernandes S, Zhu WZ, Filice D, Muskheli V, Kim J, Palpant NJ, Gantz J, Moyes KW, Reinecke H, Van Biber B, Dardas T, Mignone JL, Izawa A, Hanna R, Viswanathan M, Gold JD, Kotlikoff MI, Sarvazyan N, Kay MW, Murry CE, Laflamme MA (2012) Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature 489(7415):322–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinnawi R, Gepstein L (2014) iPCS cell modeling of inherited cardiac arrhythmias. Curr Treat Options Cardiovasc Med 16(9):331

    Article  PubMed  Google Scholar 

  • Son NH, Park TS, Yamashita H, Yokoyama M, Huggins LA, Okajima K, Homma S, Szabolcs MJ, Huang LS, Goldberg IJ (2007) Cardiomyocyte expression of PPARgamma leads to cardiac dysfunction in mice. J Clin Invest 117(10):2791–2801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souders CA, Bowers SL, Baudino TA (2009) Cardiac fibroblast: the renaissance cell. Circ Res 105(12):1164–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swope D, Cheng L, Gao E, Li J, Radice GL (2012) Loss of cadherin-binding proteins beta-catenin and plakoglobin in the heart leads to gap junction remodeling and arrhythmogenesis. Mol Cell Biol 32(6):1056–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  CAS  PubMed  Google Scholar 

  • Veerman CC, Kosmidis G, Mummery CL, Casini S, Verkerk AO, Bellin M (2015) Immaturity of human stem-cell-derived cardiomyocytes in culture: fatal flaw or soluble problem? Stem Cells Dev 24(9):1035–1052

    Article  CAS  PubMed  Google Scholar 

  • Waku T, Shiraki T, Oyama T, Maebara K, Nakamori R, Morikawa K (2010) The nuclear receptor PPARgamma individually responds to serotonin- and fatty acid-metabolites. EMBO J 29(19):3395–3407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willson TM, Lambert MH, Kliewer SA (2001) Peroxisome proliferator-activated receptor gamma and metabolic disease. Annu Rev Biochem 70:341–367

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Pabon L, Murry CE (2014) Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes. Circ Res 114(3):511–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yazawa M, Hsueh B, Jia X, Pasca AM, Bernstein JA, Hallmayer J, Dolmetsch RE (2011) Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature 471(7337):230–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science (New York, N Y) 318(5858):1917–1920

    Article  CAS  Google Scholar 

  • Zhang Z, Stroud MJ, Zhang J, Fang X, Ouyang K, Kimura K, Mu Y, Dalton ND, Gu Y, Bradford WH, Peterson KL, Cheng H, Zhou X, Chen J (2015) Normalization of Naxos plakoglobin levels restores cardiac function in mice. J Clin Invest 125(4):1708–1712

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the patients for their participation, microarray core facilities at SBMRI for their support, the Johns-Hopkins ARVD registry for their valuable support, and George W. Rogers from Seahorse Bioscience for assistance in metabolic assays. C-Y. W. is supported by a CIRM training grant (TG2-01162). H-S. V. C. is supported by grants from NIH (RO1 HL105194) and California Institute of Regenerative Medicine (CIRM RB2-01512 & RB4-06276).

Conflicts of Interest

The authors report no conflicts of interest in relation to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.-S. Vincent Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Shah, K. et al. (2016). Modeling Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy with Patient-Specific iPSCs. In: Fukuda, K. (eds) Human iPS Cells in Disease Modelling. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55966-5_3

Download citation

Publish with us

Policies and ethics