Skip to main content

Recent Improvements and Emerging Issues in iPSC Generation for the Modeling of Disease

  • Chapter
  • First Online:
Human iPS Cells in Disease Modelling

Abstract

Recently, induced pluripotent stem cells (iPSCs) have attracted attention as a novel tool for the modeling of disease because of their potential to reveal new insights that have not been elucidated using animal models. Since iPSC generation was first reported, there have been many efforts to improve the method of generating iPSCs for clinical applications. To date, many methods for iPSC generation have been reported. Each has advantages and disadvantages for the modeling of disease, and thus the most appropriate method differs depending on the intended use of the iPSCs. Additionally, as the study of disease modeling with human iPSCs has progressed, the need to remove uncertainties due to variations in iPSCs cell lines has increasingly focused researchers’ attention on attaining experimental accuracy. Recognition of these uncertainties is important for the advancement of disease modeling studies with iPSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aasen T, Raya A, Barrero MJ, Garreta E, Consiglio A, Gonzalez F, Izpisua Belmonte JC (2008) Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 26(11):1276–1284. doi:10.1038/nbt.1503

    Article  CAS  PubMed  Google Scholar 

  • Baker DE, Harrison NJ, Maltby E, Smith K, Moore HD, Shaw PJ, … Andrews PW (2007) Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat Biotechnol 25(2):207–215. doi:10.1038/nbt1285

    Google Scholar 

  • Choi SM, Liu H, Chaudhari P, Kim Y, Cheng L, Feng J, … Jang YY (2011). Reprogramming of EBV-immortalized B-lymphocyte cell lines into induced pluripotent stem cells. Blood 118(7):1801–1805. doi:10.1182/blood-2011-03-340620

    Google Scholar 

  • Dang CV (2012) MYC on the path to cancer. Cell 149(1):22–35. doi:10.1016/j.cell.2012.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M (2009) Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad B Phys Biol Sci 85(8):348–362

    Article  CAS  Google Scholar 

  • Garber K (2013) Inducing translation. Nat Biotechnol 31(6):483–486. doi:10.1038/nbt.2602

    Article  CAS  PubMed  Google Scholar 

  • Gore A, Li Z, Fung HL, Young JE, Agarwal S, Antosiewicz-Bourget J, … Zhang K (2011) Somatic coding mutations in human induced pluripotent stem cells. Nature 471(7336):63–67. doi:10.1038/nature09805

    Google Scholar 

  • Green DR, Kroemer G (2009) Cytoplasmic functions of the tumour suppressor p53. Nature 458(7242):1127–1130. doi:10.1038/nature07986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han J, Yuan P, Yang H, Zhang J, Soh BS, Li P, … Lim B (2010) Tbx3 improves the germ-line competency of induced pluripotent stem cells. Nature 463(7284):1096–1100. doi:10.1038/nature08735

    Google Scholar 

  • Hawley RG, Lieu FH, Fong AZ, Hawley TS (1994) Versatile retroviral vectors for potential use in gene therapy. Gene Ther 1(2):136–138

    CAS  PubMed  Google Scholar 

  • Hong H, Takahashi K, Ichisaka T, Aoi T, Kanagawa O, Nakagawa M, … Yamanaka S (2009) Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature 460(7259):1132–1135. doi:10.1038/nature08235

    Google Scholar 

  • Hussein SM, Batada NN, Vuoristo S, Ching RW, Autio R, Narva E, … Otonkoski T (2011) Copy number variation and selection during reprogramming to pluripotency. Nature 471(7336):58–62. doi:10.1038/nature09871

    Google Scholar 

  • Inoue H, Nagata N, Kurokawa H, Yamanaka S (2014) iPS cells: a game changer for future medicine. EMBO J 33(5):409–417. doi:10.1002/embj.201387098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kajiwara M, Aoi T, Okita K, Takahashi R, Inoue H, Takayama N, … Yamanaka S (2012) Donor-dependent variations in hepatic differentiation from human-induced pluripotent stem cells. Proc Natl Acad Sci USA 109(31):12538–12543. doi:10.1073/pnas.1209979109

    Google Scholar 

  • Kane NM, Nowrouzi A, Mukherjee S, Blundell MP, Greig JA, Lee WK, … Baker AH (2010) Lentivirus-mediated reprogramming of somatic cells in the absence of transgenic transcription factors. Mol Ther 18(12):2139–2145. doi:10.1038/mt.2010.231

    Google Scholar 

  • Kawamura T, Suzuki J, Wang YV, Menendez S, Morera LB, Raya A, … Izpisua Belmonte JC (2009) Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 460(7259):1140–1144. doi:10.1038/nature08311

    Google Scholar 

  • Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, … Kim KS (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4(6):472–476. doi:10.1016/j.stem.2009.05.005

    Google Scholar 

  • Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, … Daley GQ (2010) Epigenetic memory in induced pluripotent stem cells. Nature 467(7313):285–290. doi:10.1038/nature09342

    Google Scholar 

  • Lee AS, Tang C, Rao MS, Weissman IL, Wu JC (2013) Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med 19(8):998–1004. doi:10.1038/nm.3267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Collado M, Villasante A, Strati K, Ortega S, Canamero M, … Serrano M (2009) The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature 460(7259):1136–1139. doi:10.1038/nature08290

    Google Scholar 

  • Loh YH, Hartung O, Li H, Guo C, Sahalie JM, Manos PD, … Daley GQ (2010) Reprogramming of T cells from human peripheral blood. Cell Stem Cell 7(1):15–19. doi:10.1016/j.stem.2010.06.004

    Google Scholar 

  • Ma H, Morey R, O’Neil RC, He Y, Daughtry B, Schultz MD, … Mitalipov S (2014) Abnormalities in human pluripotent cells due to reprogramming mechanisms. Nature 511(7508):177–183. doi:10.1038/nature13551

    Google Scholar 

  • Maekawa M, Yamaguchi K, Nakamura T, Shibukawa R, Kodanaka I, Ichisaka T, … Yamanaka S (2011) Direct reprogramming of somatic cells is promoted by maternal transcription factor Glis1. Nature 474(7350):225–229. doi:10.1038/nature10106

    Google Scholar 

  • Marion RM, Strati K, Li H, Murga M, Blanco R, Ortega S, … Blasco MA (2009) A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature 460(7259):1149–1153. doi:10.1038/nature08287

    Google Scholar 

  • Miura K, Okada Y, Aoi T, Okada A, Takahashi K, Okita K, … Yamanaka S (2009) Variation in the safety of induced pluripotent stem cell lines. Nat Biotechnol 27(8):743–745. doi:10.1038/nbt.1554

    Google Scholar 

  • Miyoshi K, Tsuji D, Kudoh K, Satomura K, Muto T, Itoh K, Noma T (2010) Generation of human induced pluripotent stem cells from oral mucosa. J Biosci Bioeng 110(3):345–350. doi:10.1016/j.jbiosc.2010.03.004

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, … Yamanaka S (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26(1):101–106. doi:10.1038/nbt1374

    Google Scholar 

  • Nakagawa M, Takizawa N, Narita M, Ichisaka T, Yamanaka S (2010) Promotion of direct reprogramming by transformation-deficient Myc. Proc Natl Acad Sci U S A 107(32):14152–14157. doi:10.1073/pnas.1009374107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishimura T, Kaneko S, Kawana-Tachikawa A, Tajima Y, Goto H, Zhu D, … Nakauchi H (2013) Generation of rejuvenated antigen-specific T cells by reprogramming to pluripotency and redifferentiation. Cell Stem Cell 12(1):114–126. doi:10.1016/j.stem.2012.11.002

    Google Scholar 

  • Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448(7151):313–317. doi:10.1038/nature05934

    Article  CAS  PubMed  Google Scholar 

  • Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S, … Yamanaka S (2011) A more efficient method to generate integration-free human iPS cells. Nat Methods 8(5):409–412. doi:10.1038/nmeth.1591

    Google Scholar 

  • Okita K, Yamakawa T, Matsumura Y, Sato Y, Amano N, Watanabe A, … Yamanaka S (2013) An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells 31(3):458–466. doi:10.1002/stem.1293

    Google Scholar 

  • Polo JM, Liu S, Figueroa ME, Kulalert W, Eminli S, Tan KY, … Hochedlinger K (2010) Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol 28(8):848–855. doi:10.1038/nbt.1667

    Google Scholar 

  • Seki T, Yuasa S, Oda M, Egashira T, Yae K, Kusumoto D, … Fukuda K (2010) Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells. Cell Stem Cell 7(1):11–14. doi:10.1016/j.stem.2010.06.003

    Google Scholar 

  • Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K (2008) Induced pluripotent stem cells generated without viral integration. Science 322(5903):945–949. doi:10.1126/science.1162494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staerk J, Dawlaty MM, Gao Q, Maetzel D, Hanna J, Sommer CA, … Jaenisch R (2010) Reprogramming of human peripheral blood cells to induced pluripotent stem cells. Cell Stem Cell 7(1):20–24. doi:10.1016/j.stem.2010.06.002

    Google Scholar 

  • Stewart CL, Stuhlmann H, Jahner D, Jaenisch R (1982) De novo methylation, expression, and infectivity of retroviral genomes introduced into embryonal carcinoma cells. Proc Natl Acad Sci U S A 79(13):4098–4102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. doi:10.1016/j.cell.2006.07.024

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872. doi:10.1016/j.cell.2007.11.019

    Article  CAS  PubMed  Google Scholar 

  • Utikal J, Polo JM, Stadtfeld M, Maherali N, Kulalert W, Walsh RM, … Hochedlinger K (2009) Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature 460(7259):1145–1148. doi:10.1038/nature08285

    Google Scholar 

  • Vizcardo R, Masuda K, Yamada D, Ikawa T, Shimizu K, Fujii S, … Kawamoto H (2013) Regeneration of human tumor antigen-specific T cells from iPSCs derived from mature CD8(+) T cells. Cell Stem Cell 12(1):31–36. doi:10.1016/j.stem.2012.12.006

    Google Scholar 

  • Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, … Rossi DJ (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7(5):618–630. doi:10.1016/j.stem.2010.08.012

    Google Scholar 

  • Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hamalainen R, … Nagy A (2009) PiggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458(7239): 766–770. doi:10.1038/nature07863

    Google Scholar 

  • Yamanaka S (2010) Patient-specific pluripotent stem cells become even more accessible. Cell Stem Cell 7(1):1–2. doi:10.1016/j.stem.2010.06.009

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T, … Ding S (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4(5):381–384. doi:10.1016/j.stem.2009.04.005

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiichi Fukuda M.D., Ph.D., F.A.C.C. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Seki, T., Yuasa, S., Fukuda, K. (2016). Recent Improvements and Emerging Issues in iPSC Generation for the Modeling of Disease. In: Fukuda, K. (eds) Human iPS Cells in Disease Modelling. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55966-5_1

Download citation

Publish with us

Policies and ethics