Skip to main content

Regulation of Recombination by Chromatin

  • Chapter
  • First Online:
DNA Replication, Recombination, and Repair
  • 2802 Accesses

Abstract

Eukaryotic DNA is bound by various proteins such as histones, and is packaged into a highly condensed structure termed chromatin, which poses profound influences on DNA and its metabolism. Due to its compactness, chromatin generally represses all DNA-templated reactions by preventing DNA-processing proteins from accessing to and/or functioning at their target sites. On the contrary, there are many cases in which condensed chromatin rather facilitates genomic events through forming specific three-dimensional structures, promoting DNA-protein interactions, or bringing separately located loci together. Therefore, chromatin is a central regulator of DNA-dependent processes, and deciphering its roles is of paramount importance to understand their in vivo mechanisms. Obviously, recombination is under a great impact of chromatin, and much effort has been made to reveal how it is regulated by chromatin. In this chapter, we focus on three instances, homologous recombination, V(D)J recombination in vertebrates, and mating-type switching in fission yeast, to discuss a wide variety of roles of chromatin in regulating these events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abarrategui I, Krangel MS (2009) Germline transcription: a key regulator of accessibility and recombination. Adv Exp Med Biol 650:93–102

    Article  PubMed  CAS  Google Scholar 

  • Acquaviva L, Szekvolgyi L, Dichtl B, Dichtl BS, de La Roche Saint Andre C, Nicolas A, Geli V (2013) The COMPASS subunit Spp1 links histone methylation to initiation of meiotic recombination. Science 339(6116):215–218

    Article  PubMed  CAS  Google Scholar 

  • Adkins NL, Niu H, Sung P, Peterson CL (2013) Nucleosome dynamics regulates DNA processing. Nat Struct Mol Biol 20(7):836–842

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Akamatsu Y, Dziadkowiec D, Ikeguchi M, Shinagawa H, Iwasaki H (2003) Two different Swi5-containing protein complexes are involved in mating-type switching and recombination repair in fission yeast. Proc Natl Acad Sci U S A 100(26):15770–15775

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Arcangioli B, Thode G (2004) Mating-type cassettes: structure, switching and silencing. In: Egel RE (ed) The molecular biology of Schizosaccharomyces pombe. Springer-Verlag, Berlin Heidelberg New York, pp 129–147

    Chapter  Google Scholar 

  • Baker CL, Walker M, Kajita S, Petkov PM, Paigen K (2014) PRDM9 binding organizes hotspot nucleosomes and limits Holliday junction migration. Genome Res 24:724

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bell O, Tiwari VK, Thoma NH, Schubeler D (2011) Determinants and dynamics of genome accessibility. Nat Rev Genet 12(8):554–564

    Article  PubMed  CAS  Google Scholar 

  • Bennett G, Papamichos-Chronakis M, Peterson CL (2013) DNA repair choice defines a common pathway for recruitment of chromatin regulators. Nat Commun 4:2084

    PubMed Central  PubMed  Google Scholar 

  • Borde V, de Massy B (2013) Programmed induction of DNA double strand breaks during meiosis: setting up communication between DNA and the chromosome structure. Curr Opin Genet Dev 23(2):147–155

    Article  PubMed  CAS  Google Scholar 

  • Borde V, Robine N, Lin W, Bonfils S, Geli V, Nicolas A (2009) Histone H3 lysine 4 trimethylation marks meiotic recombination initiation sites. EMBO J 28(2):99–111

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Brick K, Smagulova F, Khil P, Camerini-Otero RD, Petukhova GV (2012) Genetic recombination is directed away from functional genomic elements in mice. Nature 485(7400):642–645

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ceballos SJ, Heyer WD (2011) Functions of the Snf2/Swi2 family Rad54 motor protein in homologous recombination. Biochim Biophys Acta 1809(9):509–523

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chai B, Huang J, Cairns BR, Laurent BC (2005) Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair. Genes Dev 19(14):1656–1661

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chakraborty T, Perlot T, Subrahmanyam R, Jani A, Goff PH, Zhang Y, Ivanova I, Alt FW, Sen R (2009) A 220-nucleotide deletion of the intronic enhancer reveals an epigenetic hierarchy in immunoglobulin heavy chain locus activation. J Exp Med 206(5):1019–1027

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chen X, Cui D, Papusha A, Zhang X, Chu CD, Tang J, Chen K, Pan X, Ira G (2012) The Fun30 nucleosome remodeller promotes resection of DNA double-strand break ends. Nature 489(7417):576–580

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Clapier CR, Cairns BR (2009) The biology of chromatin remodeling complexes. Annu Rev Biochem 78:273–304

    Article  PubMed  CAS  Google Scholar 

  • Costelloe T, Louge R, Tomimatsu N, Mukherjee B, Martini E, Khadaroo B, Dubois K, Wiegant WW, Thierry A, Burma S, van Attikum H, Llorente B (2012) The yeast Fun30 and human SMARCAD1 chromatin remodellers promote DNA end resection. Nature 489(7417):581–584

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • de Massy B (2013) Initiation of meiotic recombination: how and where? conservation and specificities among eukaryotes. Annu Rev Genet 47:563–599

    Article  PubMed  CAS  Google Scholar 

  • Fuxa M, Skok J, Souabni A, Salvagiotto G, Roldan E, Busslinger M (2004) Pax5 induces V-to-DJ rearrangements and locus contraction of the immunoglobulin heavy-chain gene. Genes Dev 18(4):411–422

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gibcus JH, Dekker J (2013) The hierarchy of the 3D genome. Mol Cell 49(5):773–782

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Golding A, Chandler S, Ballestar E, Wolffe AP, Schlissel MS (1999) Nucleosome structure completely inhibits in vitro cleavage by the V(D)J recombinase. EMBO J 18(13):3712–3723

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gospodinov A, Vaissiere T, Krastev DB, Legube G, Anachkova B, Herceg Z (2011) Mammalian Ino80 mediates double-strand break repair through its role in DNA end strand resection. Mol Cell Biol 31(23):4735–4745

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Grewal SI (2000) Transcriptional silencing in fission yeast. J Cell Physiol 184(3):311–318

    Article  PubMed  CAS  Google Scholar 

  • Hampsey M, Singh BN, Ansari A, Laine JP, Krishnamurthy S (2011) Control of eukaryotic gene expression: gene loops and transcriptional memory. Adv Enzyme Regul 51(1):118–125

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jakociunas T, Holm LR, Verhein-Hansen J, Trusina A, Thon G (2013) Two portable recombination enhancers direct donor choice in fission yeast heterochromatin. PLoS Genet 9(10), e1003762

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ji Y, Resch W, Corbett E, Yamane A, Casellas R, Schatz DG (2010) The in vivo pattern of binding of RAG1 and RAG2 to antigen receptor loci. Cell 141(3):419–431

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jia S, Yamada T, Grewal SI (2004) Heterochromatin regulates cell type-specific long-range chromatin interactions essential for directed recombination. Cell 119(4):469–480

    Article  PubMed  CAS  Google Scholar 

  • Johnson K, Pflugh DL, Yu D, Hesslein DG, Lin KI, Bothwell AL, Thomas-Tikhonenko A, Schatz DG, Calame K (2004) B cell-specific loss of histone 3 lysine 9 methylation in the V(H) locus depends on Pax5. Nat Immunol 5(8):853–861

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Klar AJ (2007) Lessons learned from studies of fission yeast mating-type switching and silencing. Annu Rev Genet 41:213–236

    Article  PubMed  CAS  Google Scholar 

  • Kosak ST, Skok JA, Medina KL, Riblet R, Le Beau MM, Fisher AG, Singh H (2002) Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science 296(5565):158–162

    Article  PubMed  CAS  Google Scholar 

  • Kwon J, Imbalzano AN, Matthews A, Oettinger MA (1998) Accessibility of nucleosomal DNA to V(D)J cleavage is modulated by RSS positioning and HMG1. Mol Cell 2(6):829–839

    Article  PubMed  CAS  Google Scholar 

  • Kwon J, Morshead KB, Guyon JR, Kingston RE, Oettinger MA (2000) Histone acetylation and hSWI/SNF remodeling act in concert to stimulate V(D)J cleavage of nucleosomal DNA. Mol Cell 6(5):1037–1048

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Mao W, Iwai C, Fukuoka S, Vulapalli R, Huang H, Wang T, Sharma VK, Sheu SS, Fu M, Liang CS (2008) Adoptive passive transfer of rabbit beta1-adrenoceptor peptide immune cardiomyopathy into the Rag2−/− mouse: participation of the ER stress. J Mol Cell Cardiol 44(2):304–314

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Matthews AG, Kuo AJ, Ramon-Maiques S, Han S, Champagne KS, Ivanov D, Gallardo M, Carney D, Cheung P, Ciccone DN, Walter KL, Utz PJ, Shi Y, Kutateladze TG, Yang W, Gozani O, Oettinger MA (2007) RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination. Nature 450(7172):1106–1110

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Misteli T (2007) Beyond the sequence: cellular organization of genome function. Cell 128(4):787–800

    Article  PubMed  CAS  Google Scholar 

  • Miyata H, Miyata M (1981) Mode of conjugation in homothallic cells of Schizosaccharomyces pombe. J Gen Appl Microbiol 27:365

    Article  Google Scholar 

  • Musselman CA, Lalonde ME, Cote J, Kutateladze TG (2012) Perceiving the epigenetic landscape through histone readers. Nat Struct Mol Biol 19(12):1218–1227

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Noma K, Allis CD, Grewal SI (2001) Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science 293(5532):1150–1155

    Article  PubMed  CAS  Google Scholar 

  • Osipovich O, Milley R, Meade A, Tachibana M, Shinkai Y, Krangel MS, Oltz EM (2004) Targeted inhibition of V(D)J recombination by a histone methyltransferase. Nat Immunol 5(3):309–316

    Article  PubMed  CAS  Google Scholar 

  • Patenge N, Elkin SK, Oettinger MA (2004) ATP-dependent remodeling by SWI/SNF and ISWI proteins stimulates V(D)J cleavage of 5 S arrays. J Biol Chem 279(34):35360–35367

    Article  PubMed  CAS  Google Scholar 

  • Phillips DM (1963) The presence of acetyl groups of histones. Biochem J 87:258–263

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Roldan E, Fuxa M, Chong W, Martinez D, Novatchkova M, Busslinger M, Skok JA (2005) Locus ‘decontraction’ and centromeric recruitment contribute to allelic exclusion of the immunoglobulin heavy-chain gene. Nat Immunol 6(1):31–41

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Schatz DG, Ji Y (2011) Recombination centres and the orchestration of V(D)J recombination. Nat Rev Immunol 11(4):251–263

    Article  PubMed  CAS  Google Scholar 

  • Seo H, Masuoka M, Murofushi H, Takeda S, Shibata T, Ohta K (2005) Rapid generation of specific antibodies by enhanced homologous recombination. Nat Biotechnol 23(6):731–735

    Article  PubMed  CAS  Google Scholar 

  • Shih HY, Krangel MS (2013) Chromatin architecture, CCCTC-binding factor, and V(D)J recombination: managing long-distance relationships at antigen receptor loci. J Immunol 190(10):4915–4921

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shim EY, Hong SJ, Oum JH, Yanez Y, Zhang Y, Lee SE (2007) RSC mobilizes nucleosomes to improve accessibility of repair machinery to the damaged chromatin. Mol Cell Biol 27(5):1602–1613

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sinha M, Watanabe S, Johnson A, Moazed D, Peterson CL (2009) Recombinational repair within heterochromatin requires ATP-dependent chromatin remodeling. Cell 138(6):1109–1121

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Smagulova F, Gregoretti IV, Brick K, Khil P, Camerini-Otero RD, Petukhova GV (2011) Genome-wide analysis reveals novel molecular features of mouse recombination hotspots. Nature 472(7343):375–378

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sommermeyer V, Beneut C, Chaplais E, Serrentino ME, Borde V (2013) Spp1, a member of the set1 complex, promotes meiotic DSB formation in promoters by tethering histone H3K4 methylation sites to chromosome axes. Mol Cell 49(1):43–54

    Article  PubMed  CAS  Google Scholar 

  • van Attikum H, Fritsch O, Hohn B, Gasser SM (2004) Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair. Cell 119(6):777–788

    Article  PubMed  Google Scholar 

  • van Attikum H, Fritsch O, Gasser SM (2007) Distinct roles for SWR1 and INO80 chromatin remodeling complexes at chromosomal double-strand breaks. Embo J 26(18):4113–4125

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yamada T, Ohta K (2013) Initiation of meiotic recombination in chromatin structure. J Biochem 154(2):107–114

    Article  PubMed  CAS  Google Scholar 

  • Yamada S, Ohta K, Yamada T (2013) Acetylated Histone H3K9 is associated with meiotic recombination hotspots, and plays a role in recombination redundantly with other factors including the H3K4 methylase Set1 in fission yeast. Nucleic Acids Res 41(6):3504–3517

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yancopoulos GD, Alt FW (1985) Developmentally controlled and tissue-specific expression of unrearranged VH gene segments. Cell 40(2):271–281

    Article  PubMed  CAS  Google Scholar 

  • Zentner GE, Henikoff S (2013) Regulation of nucleosome dynamics by histone modifications. Nat Struct Mol Biol 20(3):259–266

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We regret that much of the relevant work could not be cited due to space limitations. We thank Dr. Hidetaka Seo for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Takatomi Yamada or Kunihiro Ohta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Yamada, T., Ohta, K. (2016). Regulation of Recombination by Chromatin. In: Hanaoka, F., Sugasawa, K. (eds) DNA Replication, Recombination, and Repair. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55873-6_5

Download citation

Publish with us

Policies and ethics