Skip to main content

Mating-Type Cassettes: Structure, Switching and Silencing

  • Chapter
The Molecular Biology of Schizosaccharomyces pombe

Abstract

From a single haploid P (plus) or M (minus) cell, S. pombe is able to produce a population of haploids containing both mating types in nearly equal proportions. This ability is widespread among fungi, the presence of both mating types permitting the formation of diploids and eventually spores. Single-cell lineage approaches have revealed the asymmetry and rules of mating-type switching in S. pombe. Genetic and biochemical analyses have identified the organization of the mating-type loci and a number of genes required for the process of switching. They have yielded insights into the molecular mechanism of the switch and into two processes of epigenetic inheritance. The first process exploits the intrinsic asymmetry of DNA synthesis to restrain a gene conversion event to one of two sister chromatids. The second allows the formation and maintenance of a silent chromatin state. The interplay of both epigenetic events provides a striking example of dynamic chromatin choreography allowing progression into the S. pombe developmental program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arcangioli B (1998) A site-and strand-specific DNA break confers asymmetric switching potential in fission yeast. EMBO J 17: 4503–4510

    Article  PubMed  CAS  Google Scholar 

  • Arcangioli B (2000) Fate of mati DNA strands during mating-type switching in fission yeast. EMBO Rep 1: 145–150

    Article  PubMed  CAS  Google Scholar 

  • Arcangioli B, Klar AJS (1991) A novel switch-activating site (SAS1) and its cognate binding factor (Sapl) required for efficient matt switching in Schizosaccharomyces pombe. EMBO J 10: 3025–3032

    PubMed  CAS  Google Scholar 

  • Arcangioli B, de Lahondes R (2000) Fission yeast switches mating-type by a replication-recombination coupled process. EMBO J 19: 1389–1396

    Article  PubMed  CAS  Google Scholar 

  • Arcangioli B, Copeland TD, Klar AJ (1994) Sapl, a protein that binds to sequences required for mating-type switching, is essential for viability in Schizosaccharomyces pombe. Mol Cell Biol 14: 2058–2065

    PubMed  CAS  Google Scholar 

  • Ayoub N, Goldshmidt I, Cohen A (1999) Position effect variegation at the mating-type locus of fission yeast: a cis-acting element inhibits covariegated expression of genes in the silent and expressed domains. Genetics 152: 495–508

    PubMed  CAS  Google Scholar 

  • Ayoub N, Goldshmidt I, Lyakhovetsky R, Cohen A (2000) A fission yeast repression element cooperates with centromere-like sequences and defines a mat silent domain boundary. Genetics 156: 983–994

    PubMed  CAS  Google Scholar 

  • Bannister AJ, Zegerman P, Partridge JF et al. (2001) Selective recognition of methylated lysine 9 on histone H3 by the HPI chromo domain. Nature 410: 120–124

    Article  PubMed  CAS  Google Scholar 

  • Beach DH (1983) Cell type switching by DNA transposition in fission yeast. Nature 305: 682–688

    Article  CAS  Google Scholar 

  • Beach D, Klar AJ (1984) Rearrangements of the transposable mating-type cassettes of fission yeast. EMBO J 3: 603–610

    PubMed  CAS  Google Scholar 

  • Beach D, Nurse P, Egel R (1982) Molecular rearrangement of mating-type genes in fission yeast. Nature 296: 682–683

    Article  PubMed  CAS  Google Scholar 

  • Belling J (1933) Crossing over and gene rearrangement in flowering plants. Genetics 18: 388–413

    PubMed  CAS  Google Scholar 

  • Bjerling P (1998) Positional silencing in the mating-type region of Schizosaccharomyces pombe. PhD Thesis, University of Copenhagen

    Google Scholar 

  • Borgstrom B (1995) Characterization of the Schizosaccharomyces pombe rikl gene. PhD thesis, University of Copenhagen

    Google Scholar 

  • Carr AM (1994) Radiation checkpoints in model systems. Int J Radiat Biol 66: 133–139

    Article  Google Scholar 

  • Dalgaard JZ, Klar AJ (1999). Orientation of DNA replication establishes mating-type switching pattern in S. pombe. Nature 400: 181–184

    Article  PubMed  CAS  Google Scholar 

  • Dalgaard JZ, Klar AJ (2000) Swil and Swi3 perform imprinting, pausing and termination of DNA replication in S. pombe. Cell 102: 745–751

    Article  PubMed  CAS  Google Scholar 

  • Dalgaard JZ, Klar AJ (2001) A DNA replication-arrest site RTS1 regulates imprinting by determining the direction of replication at mati in S. pombe. Genes Dev 15: 2060–2068

    Article  PubMed  CAS  Google Scholar 

  • Egel R (1977) Frequency of mating-type switching in homothallic fission yeast. Nature 266: 172–174

    Article  PubMed  CAS  Google Scholar 

  • Egel R (1984) The pedigree pattern of mating-type switching in Schizosaccharomyces pombe. Curr Genet 8: 205–210

    Article  Google Scholar 

  • Egel R (1989) Mating-type genes, meiosis and sporulation. In: Nasim A, Young P, Johnson BF (eds) Molecular biology of the fission yeast. Academic Press, San Diego, pp 31–73

    Chapter  Google Scholar 

  • Egel R, Eie B (1987) Cell lineage asymmetry in Schizosaccharomyces pombe: unilateral transmission of a high-frequency state for mating-type switching in diploid pedigrees. Curr Genet 12: 429–433

    Article  Google Scholar 

  • Egel R, Gutz H (1981) Gene activation by copy transposition in mating-type switching of a homothallic fission yeast. Curr Genet 12: 5–12

    Article  Google Scholar 

  • Egel R, Beach DH, Klar AJ (1984) Genes required for initiation and resolution steps of mating-type switching in fission yeast. Proc Natl Acad Sci USA 81: 3481–3485

    Article  PubMed  CAS  Google Scholar 

  • Egel R, Willer M, Nielsen O (1989) Unblocking of meiotic crossing-over between the silent mating-type cassettes of fission yeast, conditioned by the recessive, pleiotropic mutant rikl. Curr Genet 15: 407–410

    Article  Google Scholar 

  • Ekwall K, Ruusala T (1994) Mutations in rikl, clr2, clr3 and clr4 genes asymmetrically derepress the silent mating-type loci in fission yeast. Genetics 136: 53–64

    PubMed  CAS  Google Scholar 

  • Ekwall K, Javerzat JP, Lorentz A et al. (1995) The chromodomain protein Swi6: a key component at fission yeast centromeres. Science 269: 1429–1431

    Article  PubMed  CAS  Google Scholar 

  • Ekwall K, Nimmo ER, Javerzat JP et al. (1996) Mutations in the fission yeast silencing factors are and rikl + disrupt the localisation of the chromo domain protein Swi6p and impair centromere function. J Cell Sci 109: 2637–2648

    PubMed  CAS  Google Scholar 

  • Engelke U, Grabowski L, Gutz H et al. (1987) Molecular characterization of h-mutants of Schizosaccharomyces pombe. Curr Genet 18: 535–540

    Article  Google Scholar 

  • Foss EJ (2001) Toflp regulates DNA damage responses during S phase in Saccharomyces cerevisiae. Genetics 157: 567–577

    PubMed  CAS  Google Scholar 

  • Ghazvini M, Ribes V, Arcangioli B (1995) The essential DNA-binding protein Sapl of Schizosaccharomyces pombe contains two independent oligomerization interfaces that dictate the relative orientation of the DNA-binding domain. Mol Cell Biol 15: 4939–4946

    PubMed  CAS  Google Scholar 

  • Grewal SI, Klar AJ (1996) Chromosomal inheritance of epigenetic states in fission yeast during mitosis and meiosis. Cell 86: 95–101

    Article  PubMed  CAS  Google Scholar 

  • Grewal SI, Klar AJ (1997) A recombinationally repressed region between mat2 and mat3 loci shares homology to centromeric repeats and regulates directionality of mating-type switching in fission yeast. Genetics 146: 1221–1238

    PubMed  CAS  Google Scholar 

  • Grewal SI, Bonaduce MJ, Klar AJ (1998) Histone deacetylase homologs regulate epigenetic inheritance of transcriptional silencing and chromosome segregation in fission yeast. Genetics 150: 563–576

    PubMed  CAS  Google Scholar 

  • Gutz H, Schmidt H (1985) Switching genes in Schizosaccharomyces pombe. Curr Genet 9: 325–331

    Article  CAS  Google Scholar 

  • Halverson D, Gutkin G, Clarke L (2000) A novel member of the Swi6p family of fission yeast chromo domain-containing proteins associates with the centromere in vivo and affects chromosome segregation. Mol Gen Genet 264: 492–505

    Article  PubMed  CAS  Google Scholar 

  • Ivanova AV, Bonaduce MJ, Ivanov SV, Klar AJ (1996) The chromo and SET domains of the C1r4 protein are essential for silencing in fission yeast. Nat Genet 19: 192–195

    Article  Google Scholar 

  • Kelly M, Burke J, Smith M et al. (1988) Four mating-type genes control sexual differenciation in the fission yeast. EMBO J 7: 1537–1547

    PubMed  CAS  Google Scholar 

  • Kim WJ, Lee S, Park MS et al. (2000) Rad22 protein, a Rad52 homologue in Schizosaccharomyces pombe, binds to DNA double-strand breaks. J Biol Chem 275: 35607–35611

    Article  PubMed  CAS  Google Scholar 

  • Klar AJ (1987) Differential parental DNA strands confer developmental asymmetry on daughter cells in fission yeast. Nature 326: 466–470

    Article  PubMed  CAS  Google Scholar 

  • Klar AJ (1990) The developmental fate of fission yeast cells is determined by the pattern of inheritance of parental and grandparental DNA strands. EMBO J 9: 1407–1415

    PubMed  CAS  Google Scholar 

  • Klar AJ (1992) Molecular genetics of fission yeast cell type: mating type and mating-type interconversion. In: Jones EW, Pringle JR, Broach JR (eds) The molecular and cellular biology of the yeast Saccharomyces - gene expression. CSH Laboratory Press, Cold Spring Harbor, pp 745–777

    Google Scholar 

  • Klar AJ, Miglio LM (1986) Initiation of meiotic recombination by double-strand DNA breaks in Schizosaccharomyces pombe. Cell 46: 725–731

    Article  PubMed  CAS  Google Scholar 

  • Klar AJ, Bonaduce MJ, Cafferkey R (1991) The mechanism of fission yeast mating-type interconversion: seal/replicate/cleave model of replication across the double-stranded break site at mati. Genetics 127: 489–495

    PubMed  CAS  Google Scholar 

  • Lachner M, O’Carroll D, Rea S et al. (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410: 116–20

    Article  PubMed  CAS  Google Scholar 

  • Leupold U (1950) Die Vererbung von Homothallie und Heterothallie bei Schizosaccharomyces pombe. CR Lab Carlsberg Ser Physiol. 24: 381–480

    Google Scholar 

  • Leupold U (1955) Methodisches zur Genetik von Schizosaccharomyces pombe. Schweiz Z Allg Pathol Bakteriol 18: 161–170

    Google Scholar 

  • Lorentz A, Heim L, Schmidt H (1992) The switching gene swi6 affects recombination and gene expression in the mating-type region of Schizosaccharomyces pombe. Mol Gen Genet 233: 436–442

    Article  PubMed  CAS  Google Scholar 

  • Lorentz A, Ostermann K, Fleck O, Schmidt H (1994) Switching gene swi6, involved in repression of silent mating-type loci in fission yeast, encodes a homologue of chromatin-associated proteins from Drosophila and mammals. Gene 143: 139–143

    Article  PubMed  CAS  Google Scholar 

  • Meselson M, Stahl FW (1958) The replication of DNA in Escherichia coli. Proc Natl Acad Sci USA 4: 671–682

    Article  Google Scholar 

  • Miyata H, Miyata M (1981) Mode of conjugation in homothallic cells of Schizosaccharomyces pombe. J Gen Appl Microbiol 27: 365–369

    Article  Google Scholar 

  • Nakayama J, Rice JC, Strahl BD et al. (2001) Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292: 110–113

    Article  PubMed  CAS  Google Scholar 

  • Nakayama J, Allshire R, Klar AS, Grewal SI (2001) A role for DNA polymerase a in epigenetic control of transcriptional silencing in fission yeast. EMBO J 20: 2857–2866

    Article  CAS  Google Scholar 

  • Nielsen O, Egel R (1989). Mapping of the double-strand breaks at the mating-type locus in fission yeast by genomic sequencing. EMBO J 8: 269–276

    PubMed  CAS  Google Scholar 

  • Nielsen IS, Nielsen O, Murray JO, Thon G (2002) The fission yeast ubiquitin-conjugating enzymes UbcP3, Ubc15, and Rhp6 affect transcriptional silencing of the mating-type region. Eukaryotic Cell 1: 613–625

    Article  PubMed  CAS  Google Scholar 

  • Noma K, Allis CD, Grewal SI (2001) Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science 293: 1150–1155

    Article  PubMed  CAS  Google Scholar 

  • Ostermann K, Lorentz A, Schmidt H (1993) The fission yeast rad22 gene, having a function in mating-type switching and repair of DNA damages, encodes a protein homolog to Rad52 of S. cerevisiae. Nucleic Acids Res 21: 5940–5944

    Article  PubMed  CAS  Google Scholar 

  • Paques F, Haber JE (1997) Two pathways for removal of nonhomologous DNA ends during double-strand break repair in Saccharomyces cerevisiae. Mol Cell Biol 17: 6765–6771

    PubMed  CAS  Google Scholar 

  • Park H, Sternglanz R (1999) Identification and characterization of the genes for two topoisomerase I-interacting proteins from Saccharomyces cerevisiae. Yeast 15: 35–41

    Article  PubMed  CAS  Google Scholar 

  • Rea S, Eisenhaber F, O’Carroll D et al. (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406: 593–599

    Article  PubMed  CAS  Google Scholar 

  • Rodel C, Jupitz T, Schmidt H (1997) Complementation of the DNA repair-deficient swi10 mutant of fission yeast by the human ERCC1 gene. Nucleic Acids Res 25: 2823–2827

    Article  PubMed  CAS  Google Scholar 

  • Rudolph C, Fleck 0, Kohli J (1998) Schizosaccharomyces pombe exol is involved in the same mismatch repair pathway as msh2 and pmsl. Curr Genet 34: 343–350

    Google Scholar 

  • Schmidt H, Kapitza P, Gutz H (1987) Switching genes in Schizosaccharomyces pombe: Their influence on cell viability and recombination. Curr Genet 11: 303–308

    Google Scholar 

  • Singh J, Klar AJ (1993) DNA polymerase a is essential for mating-type switching in fission yeast. Nature 361: 271–276

    Article  PubMed  CAS  Google Scholar 

  • Strathern JN, Klar AJ, Hicks JB et al. (1982) Homothallic switching of yeast mating type cassettes is initiated by a double-stranded cut in the MAT locus. Cell 31: 183–192

    Article  PubMed  CAS  Google Scholar 

  • Styrkarsdottir U, Egel R, Nielsen 0 (1993) The smt-0 mutation which abolishes mating-type switching in fission yeast is a deletion. Curr Genet 23: 184–186

    CAS  Google Scholar 

  • Thon G, Friis T (1997) Epigenetic inheritance of transcriptional silencing and switching competence in fission yeast. Genetics 145: 685–696

    PubMed  CAS  Google Scholar 

  • Thon G, Klar AJ (1992) The clri locus regulates the expression of the cryptic mating-type loci of fission yeast. Genetics 131: 287–296

    PubMed  CAS  Google Scholar 

  • Thon G, Klar AJ (1993) Directionality of fission yeast mating-type interconversion is controlled by the location of the donor loci. Genetics 134: 1045–1054

    PubMed  CAS  Google Scholar 

  • Thon G, Verhein-Hansen J (2000) Four chromo-domain proteins of Schizosaccharomyces pombe differentially repress transcription at various chromosomal locations. Genetics 155: 551–568

    PubMed  CAS  Google Scholar 

  • Thon G, Cohen A, Klar AJ (1994) Three additional linkage groups that repress transcription and meiotic recombination in the mating-type region of Schizosaccharomyces pombe. Genetics 138: 29–38

    PubMed  CAS  Google Scholar 

  • Thon G, Bjerling KP, Nielsen IS (1999) Localization and properties of a silencing element near the mat3-M mating-type cassette of Schizosaccharomyces pombe. Genetics 151: 945–963

    PubMed  CAS  Google Scholar 

  • Thon G, Bjerling KP, Bünner CM, Verhein-Hansen J (2002) Expression-state boundaries in the mating-type region of fission yeast. Genetics 161: 611–622

    PubMed  CAS  Google Scholar 

  • Tornier C, Bessone S, Varlet I et al. (2001) Requirement for Msh6, but not for Swi4 (Msh3), in Msh2-dependent repair of base-base mismatches and mononucleotide loops in Schizo-saccharomyces pombe. Genetics 158: 65–75

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Arcangioli, B., Thon, G. (2004). Mating-Type Cassettes: Structure, Switching and Silencing. In: Egel, R. (eds) The Molecular Biology of Schizosaccharomyces pombe . Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10360-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10360-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05631-4

  • Online ISBN: 978-3-662-10360-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics