Skip to main content

Defect Engineering in Silicon Materials

  • Chapter
  • First Online:
Defects and Impurities in Silicon Materials

Part of the book series: Lecture Notes in Physics ((LNP,volume 916))

Abstract

Point Defects (i.e. vacancies and selfinterstials are zero-dimensional defects) in silicon. In solids in general, such defects are unavoidable, their presence follows from the Second Law of Thermodynamics; for a given temperature and for each species of intrinsic point defects (vacancy, self-interstitial). In contrast, impurities for which there is an equilibrium solubility, can be avoided by suitable countermeasures. Likewise, one-dimensional defects (dislocations), two-dimensional defects (e.g. stacking faults) and three-dimensional defects (e.g. voids or precipitates of impurities) can be avoided by defect engineering; they are not inevitable by the laws of thermodynamics. To turn silicon into practical devices (e.g. integrated circuits, photovoltaic cells), defect engineering is part and parcel of the overall process and production technology. First, the fundamentals will be explained, e.g. the analogy between the chemistry of ions in water as a “substrate” and the “chemistry” of point defects in silicon, the most perfect, purest solid material available. Secondly, the application of these fundamental defect engineering principles will be described for various technology areas. The focus will be on microelectronics, photovoltaics will also be mentioned. Topics in microelectronics will include the impact of oxidation, ion implantation, reactive ion etching and thermal processes for diffusion of dopant atoms. Gettering of metal contamination will also be considered. It will be elucidated that there is a close interaction of metal impurities and extended defects, and that an uncontrolled metal contamination is a source of unacceptable quality risks in the production of microelectronic devices and photovoltaic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Falster, R., Voronkov, V.V., Quast, F.: On the properties of intrinsic defects in silicon: a perspective from crystal growth and wafer processing. Phys. Stat. Sol (B) 222, 219 (2000)

    Article  Google Scholar 

  2. SEMI M1 Standard for silicon wafers. http://ams.semi.org/ebusiness/standards/SEMIStandardDetail.aspx?ProductID=1948&DownloadID=3469

  3. International Roadmap for Semiconductors ITRS. http://www.itrs.net/Links/2013ITRS/2013Chapters/2013Overview.pdf and International Technical Roadmap for Photovoltaics, http://www.itrpv.net/Reports/Downloads/

  4. Kolbesen, B.O., Strunk, H.: VLSI electronics: microstructure science. In: Einspruch, N.G., Huff, H.R. (eds.) Silicon Materials, vol. 12, p. 143. Academic Press, New York (1985)

    Google Scholar 

  5. http://www.semi.org/Standards

  6. Bergholz, W., Zoth, G., Wendt, H., Sauter, S., Asam, G.: Metal contamination control in silicon VLSI technology: fundamentals. Siemens Forsch- und Entwickl Ber 16, 241 (1987)

    Google Scholar 

  7. Shimura, F.: Oxygen in Silicon. Semiconductor and Semimetal Series, vol. 42. Academic Press, New York (1994)

    Google Scholar 

  8. Bergholz, W.: Grown-in and process induced defects. In: Shimura, F. (ed.) Oxygen in Silicon. Academic Press, Boston (1994)

    Google Scholar 

  9. http://www.itrpv.net/Reports/Downloads/2015/

  10. http://www.oecd-ilibrary.org/energy/world-energy-outlook_20725302;jsessionid=3y9ykh6ljjtq.x-oecd-live-03

  11. Bergholz, W., Gilles, W.: Impact of research on defects in silicon on the microelectronics industry. Phys. Stat. Sol (B) 222, 5 (2000)

    Article  Google Scholar 

  12. Obry, M., Bergholz, W., Cerva, H., Kürner, W., Schrems, M., Sachse, J.U., Winkler, R.: The role of metal contamination and crystal defects in quarter micron technology. In: Abe, T., Bullis, W.M., Kobaysashi, S., Lin, W., Wagner, P. (eds.) Proceedings of the 3rd International Symposium Defects in Silicon, p. 133. The Electrochemical Society, Pennington (1999)

    Google Scholar 

  13. Kolbesen, B.O., Cerva, H., Gelsdorf, F., Zoth, G., Bergholz, W.: Process-induced defects in silicon VLSI technology. In: Proceedings of the Semicon Europe, Zürich, Mar 1992

    Google Scholar 

  14. Bergholz, W., Landsmann, D., Schauberger, P., Schöpperl, B.: Contamination monitoring and control in device fabrication. In: Kolbesen, B.O., Claeys, C., Stallhofer, P., Tardif, F. (eds.) Crystalline Defects and Contamination: Their Impact and Control in Device Manufacturing, p. 69. The Electrochemical Society, Pennington (1993)

    Google Scholar 

  15. Bergholz, W., Zoth, G., Gelsdorf, F., Kolbesen, B.: Metal contamination in ULSI technology. In: Bullis, W.M., Gösele, U., Shimura, F. (eds.) Defects in Silicon II, p. 21. The Electrochemical Society, Pennington (1991)

    Google Scholar 

  16. Dinkel, T.: Integrated efficiency engineering in solar cell mass production. PhD Thesis, Jacobs University Bremen (2010)

    Google Scholar 

  17. Raykov, A.: Potential-induced degradation – a multi-level problem. PhD Thesis, Jacobs University Bremen (2015)

    Google Scholar 

  18. Graff, K.: Metal Impurities in Silicon-Device Fabrication. Springer Series in Materials Science (Book 24). Springer, Berlin (1990)

    Google Scholar 

  19. Pyztek, T., Keller, P.: The Handbook for Quality Management. Mc GrawHill, New York (2013)

    Google Scholar 

  20. Graff, K.: Transition metals in silicon and their gettering behaviour. Mater. Sci. Eng. B 4, 63–69 (1989)

    Google Scholar 

  21. Tuck, B.: Introduction to Diffusion in Semiconductors. IEE Monograph Series, vol. 16. Peter Peregrinus Ltd., on behalf of the Institution of Electrical Engineers, Stevenage (1974)

    Google Scholar 

  22. Gilles, D., Schröter, W., Bergholz, W.: Impact of the electronic structure on the solubility and diffusion of 3d transition elements in silicon. Phys. Rev. B41, 5770 (1990)

    Article  Google Scholar 

  23. Winkler, R., Behnke, G.: Gate oxide quality related to bulk properties and its influence on DRAM device performance. Semicond. Silicon. 94, 673 (1994)

    Google Scholar 

  24. Hannay, N.B.: Bell Lab reports (1958)

    Google Scholar 

  25. Pell, E.M.: Ion drift in an n-p junction. J. Appl. Phys. 31, 291 (1960)

    Article  Google Scholar 

  26. Bergholz, W.: Analysis of extended defects. In: Schulz, M. (ed.) Landolt Börnstein Handbook of Physics, Neue Serie 22B, p. 126. Springer, Berlin (1988)

    Google Scholar 

  27. Hourai, M., et al.: Behavior of defects induced by metallic impurities on Si (100) surfaces. Jap. J. Appl. Phys. 28, 2413 (1989)

    Google Scholar 

  28. Nikkei Microdevices May 1990

    Google Scholar 

  29. Lehmann, V., Föll, H.: Minority corner diffusion length measurements in silicon wafers using a Si-electrolyte contact. J. Electrochem. Soc. 135, 2831 (1988)

    Google Scholar 

  30. Hellmann, D., Rother, M., Hill, M., Bergholz, W., Riedlbauer, M.: Influence of quartzglass on silicon wafers application studies and examples from device production. In: Schidt, D.N. (ed.) Contamination Control and Defect Reduction in Semiconductor Manufacturing III, p. 285D. The Electrochemical Society, Pennington (1994)

    Google Scholar 

  31. Bergholz, W., Landsmann, D., Schauberger, P., Wittman, J., Hoffmann, H.: Relevance and effects of metal contamination on device processes and parameters. In: Proceedings of the Technical Conference SEMICON Europa, Geneva, 5 Apr 1995

    Google Scholar 

  32. Zoth, G., Bergholz, W.: A fast, preparation-free method to detect iron in silicon. J. Appl. Phys. 67, 6764 (1990)

    Article  Google Scholar 

  33. Falster, R., Bergholz, W.: The gettering of transition metals by oxygen-related defects in silicon. J. Electrochem. Soc. 137, 1548 (1990)

    Article  Google Scholar 

  34. Bergholz, W., Mohr, W., Drewes, W., Wendt, H.: Defect-related gate oxide breakdown. Mater. Sci. Eng. B4, 359 (1989)

    Article  Google Scholar 

  35. Dellith, M., Gelsdorf, F., Bergholz, W., Booker, G.R., Kolbesen, B.O.: TEM, etching studies of fabrication-induced defects in 4 M DRAMs. Inst. Phys. Conf. Ser. 117, 169 (1991)

    Google Scholar 

  36. Dellith, M., Booker, G.R., Kolbesen, B.O., Bergholz, W., Gelsdorf, F.: On the formation of trench-induced dislocations in dynamic random access memories (DRAMs). Inst. Phys. Conf. Ser. 134, 235 (1993)

    Google Scholar 

  37. Zoth, G., Bergholz, W.: Metal contamination control by diffusion length measurements – principles and practice. In: Proceedings of the Technical Conference Productronica, Munich, Nov 1997

    Google Scholar 

  38. Raykov, A., Hahn, H., Stegemann, K.-H., Kutzer, M., Storbeck, O., Neuhaus, H., Bergholz, W.: Towards a Root Cause Model for the Potential-Induced Degradation in Crystalline Silicon Photovoltaic Cells and Modules. PV EUSEC, Paris, p. 2998 (2013); Raykov, A., Stegemann, K.-H., Hahn, H., Bitnar, B., Kutzer, M., Neuhaus, H., Bergholz, W.: On the PID inhomogeneities. Presented at the EU PVSEC, Amsterdam (2014)

    Google Scholar 

  39. Naumann, V., Lausch, D., Hähnel, A., Bauer, J., Breitenstein, O., Graff, A., Werner, M., Swatek, S., Großer, S., Bagdahn, J., Hagendorf, C.: Explanation of potential-induced degradation of the shunting type by Na decoration of stacking faults in Si solar cells. Sol. Energy Mater. Sol. Cells 120(Part A), 383–389 (2014)

    Article  Google Scholar 

  40. Schröter, W., Kühnapfel, R.: Model describing phosphorus diffusion gettering of transition elements in silicon. Appl. Phys. Lett. 56, 2207 (1990)

    Article  Google Scholar 

  41. Jastrzebski, L., Soydan, R., McGinn, J., Kleppinger, R., Blumenfeld, M., Gillespie, G., Armour, N., Goldsmith, B., Henry, W., Vecrumba, S.: A comparison of internal gettering during bipolar, CMOS, and CCD (high, medium, low temperature) processes. J. Electrochem. Soc. 134, 1018–1025 (1987)

    Article  Google Scholar 

  42. Falster, R., Voronkov, V.V.: The engineering of intrinsic point defects in silicon wafers and crystals. Mater. Sci. Eng. B 73, 87 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Bergholz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Bergholz, W. (2015). Defect Engineering in Silicon Materials. In: Yoshida, Y., Langouche, G. (eds) Defects and Impurities in Silicon Materials. Lecture Notes in Physics, vol 916. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55800-2_9

Download citation

Publish with us

Policies and ethics