Skip to main content

Nuclear Methods to Study Defects and Impurities in Si Materials

  • Chapter
  • First Online:
Defects and Impurities in Silicon Materials

Part of the book series: Lecture Notes in Physics ((LNP,volume 916))

Abstract

The hyperfine interaction between the atomic nucleus and its surrounding charge and electromagnetic field distribution is extremely sensitive to the atomic and electronic configuration of this atom. In the field of defects and impurities in semiconductors, the study of their hyperfine interaction can therefore contribute substantially to their identification and characterization. The introduction of radioactive isotopes as impurity atoms allows to probe the hyperfine interaction of extremely low quantities of such impurities. Several dedicated nuclear methods such as Mössbauer Spectroscopy, Perturbed Angular Correlations and Low Temperature Nuclear Orientation allow to measure the hyperfine interaction at the nuclear site of the impurity atom by analysing the radiation emitted by these probe nuclei. The Emission Channelling technique, on the other hand, allows studying the precise lattice site location of the probe atoms from the channelling behaviour of the particles emitted by these probe nuclei.

In the first part of this chapter we will describe the basic principles of these nuclear methods and illustrate them with a few relevant examples.

In the second part of this chapter we will focus on a series of recent Mössbauer spectroscopy studies which have been set up to study 57Fe solute atoms in Si wafers and solar cells under special conditions such as under applied voltage and external illumination. Finally, we will describe the basic principles of a Mössbauer microscope, allowing to map the presence of Fe across a Si wafer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Schatz, G., Weidinger, A.: Nuclear Condensed Matter Physics: Nuclear Methods and Applications. Wiley, New York (1995)

    Google Scholar 

  2. Langouche, G. (ed.): Hyperfine Interaction of Defects in Semiconductors. Elsevier, Amsterdam (1992)

    Google Scholar 

  3. Mössbauer, R.L.: Gammastrahlung in Ir191. Zeitschrift für Physik A 151, 124–143 (1958)

    Google Scholar 

  4. Cohen, R.L. (ed.): Applications of Mössbauer Spectroscopy: Volume 1. Academic Press, New York (1976)

    Google Scholar 

  5. Wikipedia. Mössbauer Spectroscopy

    Google Scholar 

  6. Yoshida, Y., Langouche, G. (eds.): Mössbauer Spectroscopy: Tutorial Book. Springer, Berlin (2013)

    Google Scholar 

  7. Langouche, G., de Potter, M., Dézsi, I., Van Rossum, M.: Mössbauer study of the microscopic surrounding of Co atoms implanted in Si and Ge below the full amorphization limit. Radiat. Eff. Lett. 67, 101–106 (1982)

    Google Scholar 

  8. Latshaw, G.L.: A Mössbauer effect study of iron implanted into silicon, diamond and germanium. PhD thesis, Stanford University (1971)

    Google Scholar 

  9. Latshaw, G.L., Russell, P.B., Hanna, S.S.: In-beam implantation of iron into germanium, silicon and diamond studied by the Mössbauer effect. Hyperfine Interact. 8, 105–127 (1980)

    Google Scholar 

  10. Sawicka, B.D., Sawicki, J.A.: Evidence of the electric quadrupole coupling of 57Fe implanted in silicon. Phys. Lett. A64, 311–312 (1977)

    Google Scholar 

  11. Sawicki, J.A., Sawicka, B.D.: Correlation of isomer shift, quadrupole coupling and interatomic distance in group-IV elements. Phys. Stat. Sol. B 86, K159–K161 (1978)

    Google Scholar 

  12. Langouche, G., de Potter, M.: Identification of substitutional and interstitial Co implanted in Si. Nucl. Instrum. Methods Phys. Res. B 19(20), 322–324 (1987)

    Google Scholar 

  13. Schwalbach, P., Laubach, S., Hartick, M., Kankeleit, E., Keck, B., Menningen, M., Sielemann, R.: Diffusion and isomer shift of interstitial iron in silicon observed via in-beam Mössbauer spectroscopy. Phys. Rev. Lett. 64, 1274–1277 (1990)

    Google Scholar 

  14. Gunnlaugsson, H.P., Weyer, G., Dietrich, M., Fanciulli, M., Bharuth-Ram, K., Sielemann, R., and the ISOLDE Collaboration: Charge state dependence of the diffusivity of interstitial Fe in silicon detected by Mössbauer spectroscopy. Appl. Phys. Lett. 80, 2657–2659 (2002)

    Google Scholar 

  15. http://defects.physics.wsu.edu/pac_setup.html

  16. Wichert, T., Swanson, M.L., Queneville, A.F.: Formation of In-As complexes in silicon observed by the perturbed angular correlation technique. Phys. Rev. Lett. 57, 1757–1760 (1986)

    Google Scholar 

  17. Sugimoto, K., Mizobuchi, A., Nakai, K., Matuda, K.: Nuclear magnetic resonance of polarized 17F formed through the reaction. Phys. Lett. 18, 38–39 (1965)

    Google Scholar 

  18. http://isolde.web.cern.ch courtesy of M. Stachura

  19. Minamisono, T., Nojiri, Y., Deutch B.I., Asahi K.: Hyperfine interactions of polarized -emitting and in Si, Ge and GaP. Hyperfine Interact. 15(16), 543 (1983)

    Google Scholar 

  20. Metzner, H., Sulzer, G., Seelinger, W., Ittermann, B., Frank, H.-P., Fischer, B., Ergezinger, K.-H., Dippel, R., Diehl, E., Stockmann, H.-J., Ackermann, H.: Bulk-doping-controlled implantation site of boron in silicon. Phys. Rev. B 42, 11419–11422 (1990)

    Google Scholar 

  21. Wolf, H., Wagner, F., Wichert, T.: Anomalous diffusion profiles of Ag in CdTe due to chemical self-diffusion. Phys. Rev. Lett. 94, 125901 (2005)

    Google Scholar 

  22. Achtziger, N., Forkel-Wirth, D., Grillenberger, J., Licht, T., Witthuhn, W.: Identification of deep bandgap states in 4H- and 6H-SiC by radio-tracer DLTS and PAC-spectroscopy. Nucl. Instr. Meth. Phys. Res. B. 136, 756–762 (1998)

    Google Scholar 

  23. Johnston, K., Henry, M.O., McCabe, D., McGlynn, E., Dietrich, M., Alves, E., Xia, M.: Identification of donor-related impurities in ZnO using photoluminescence and radiotracer techniques. Phys. Rev. B 73, 165212 (2006)

    Google Scholar 

  24. Von Nathusius, C., Vianden, R.: Hall effect measurements on transmutation doped semiconductors. Hyperfine Interact. 129, 391–400 (2000)

    Google Scholar 

  25. http://isolde.web.cern.ch courtesy of U. Wahl

  26. Wahl, U., Correia, J.G., Czermak, A., Jahn, S.G., Jalocha, P., Marques, J.G., Rudge, A., Schopper, F., Soares, J.C., Vantomme, A., Weilhammer, P., and the ISOLDE Collaboration: Position-sensitive Si pad detectors for electron emission channeling experiments. Nucl. Instr. Meth. Phys. Res. A. 524, 245–256 (2004)

    Google Scholar 

  27. Wahl, U., Vantomme, A., Langouche, G., Marques, J., Correia, J.G.: Direct evidence for tetrahedral interstitial Er in Si. Phys. Rev. Lett. 79, 2069–2072 (1997)

    Google Scholar 

  28. Wahl, U., Correia, J.G., Rita, E., Araujo, J.P., Soares, J.C.: Lattice sites of implanted Fe in Si. Phys. Rev. B 72, 014115 (2005)

    Google Scholar 

  29. Istratov, A.A., Hieslmair, H., Weber, E.R.: Iron and its complexes in silicon. Appl. Phys. A 69, 13–44 (1999)

    Google Scholar 

  30. Istratov, A.A., Hieslmair, H., Weber, E.R.: Iron contamination in silicon technology. Appl. Phys. A 70, 489–534 (2000)

    Google Scholar 

  31. Macdonald, D., Tan, J., Trupke, T.: Imaging interstitial iron concentrations in boron-doped crystalline silicon using photoluminescence. J. Appl. Phys 103, 073710–073717 (2008)

    Google Scholar 

  32. Schubert, M.C., Kerler, M.J., Warta, W.: Influence of heterogeneous profiles in carrier density measurements with respect to iron concentration measurements in silicon. J. Appl. Phys 105, 114903–114906 (2009)

    Google Scholar 

  33. Zoth, G., Bergholz, W.: A fast, preparation-free method to detect iron in silicon. J. Appl. Phys. 67, 6764–6771 (1990)

    Google Scholar 

  34. Langouche, G.: Characterization of semiconductors by Mössbauer spectroscopy. In: Long, G.L., Grandjean, F. (eds.) Mössbauer Spectroscopy Applied to Inorganic Chemistry, vol. 3, pp. 445–512. Plenum Press, New York (1989)

    Google Scholar 

  35. Gilles, D., Schroter, W., Bergholz, W.: Impact of the electronic structure on the solubility and diffusion of 3d transition elements in silicon. Phys. Rev. B 41, 5770–5782 (1990)

    Google Scholar 

  36. Langouche, G., Yoshida, Y.: Ion implantation. In: Yoshida, Y., Langouche, G. (eds.) Mössbauer Spectroscopy – Tutorial Book, pp. 267–303. Springer, Berlin (2013)

    Google Scholar 

  37. Yoshida, Y., Shimura, F.: In-situ observation of diffusion and segregation of Fe atoms in Si crystals at high temperature by Mössbauer spectroscopy. In: Huff, H.R., Gösele, U., Tsuya, H. (eds.) Proceedings of 8th International Symposium on Silicon Materials Science and Technology, vol. 98-1, pp. 984–996. ECS, San Diego (1998)

    Google Scholar 

  38. Yoshida, Y.: Direct observation of substitutional and interstitial Fe atoms in Si by high-temperature and in-beam Mössbauer spectroscopy. In: PV2003-03 of ECS, ALTECH 2003 Analytical and Diagnostic Techniques for Semiconductor Materials and Processes, 479–482. Salt Lake City (2003)

    Google Scholar 

  39. Yoshida, Y., Ogawa, S., Arikawa, K.: Direct observation of substitutional Fe atoms in Si and SOI wafers at 1273 K. Physica B 340–342, 605–608 (2003)

    Google Scholar 

  40. Yoshida, Y., Horie, S., Niira, K., Fukui, K., Shirasawa, K.: In-situ observation of iron atoms in multicrystalline silicon at 1273 K and 300 K by Mössbauer spectroscopy. Physica B 376–377, 226–230 (2006)

    Google Scholar 

  41. Yoshida, Y., Aoki, S., Sakata, K., Suzuki, Y., Adachi, M., Suzuki, K.: Iron impurities in multicrystalline silicon studied by Mössbauer spectroscopy. Physica B 401–402, 119–122 (2007)

    Google Scholar 

  42. Yoshida, Y., Suzuki, Y., Matsushita, A., Suzuki, K., Sakata, K.: Fermi level dependence of Mössbauer spectroscopic components corresponding to iron interstitials and their clusters in silicon. Physica B 401–402, 167–170 (2007)

    Google Scholar 

  43. Yoshida, Y., Kobayashi, Y., Hayakawa, K., Yukihira, K., Shimura, F., Yoshida, A., Diao, X., Ogawa, H., Yano, Y., Ambe, F.: In-beam Mössbauer study on interstitial and substitutional 57Mn/57Fe jumps in Si. Defect Diffus. Forum 194–199, 611 (2001)

    Google Scholar 

  44. Yoshida, Y., Kobayashi, Y., Yoshida, A., Diao, X., Ogawa, S., Hayakawa, K., Yukihira, K., Shimura, F., Ambe, F.: In-beam Mössbauer spectroscopy after GeV-Ion implantation at an on-line projectile-fragments separator. Hyperfine Interact. 141–142, 157–162 (2002)

    Google Scholar 

  45. Yoshida, Y., Kobayashi, Y., Hayakawa, K., Yukihira, K., Yoshida, A., Ueno, H., Shimura, F., Ambe, F.: In-situ observation of substitutional and interstitial Fe atoms in Si after GeV-implantation: an in-beam Mossbauer study. Physica B 376–377, 69–72 (2006)

    Google Scholar 

  46. Yoshida, Y., Kobayashi, Y., Yukihira, K., Hayakawa, K., Suzuki, K., Yoshida, A., Ueno, H., Yoshimi, A., Shimada, K., Nagae, D., Asahi, K., Langouche, G.: 57Fe diffusion in n-type Si after GeV implantation of 57Mn. Physica B 401–402, 101–104 (2007)

    Google Scholar 

  47. Yoshida, Y., Suzuki, K., Kobayashi, Y., Nagatomo, T., Akiyama, Y., Yukihira, K., Hayakawa, K., Ueno, H., Yoshimi, A., Nagae, D., Asahi, K., Langouche, G.: 57Fe charge state in mc-Si solar cells under light illumination after GeV- implantation of 57Mn. Hyperfine Interact. 204, 133–137 (2011)

    Google Scholar 

  48. Suzuki, K., Yoshida, Y., Kamimura, T., Ichino, M., Asahi, K.: Iron diffusion in silicon under external stress. Physica B 404, 4678–4680 (2009)

    Google Scholar 

  49. Suzuki, K., Yoshida, Y., Hayakawa, K., Yukihira, K., Ichino, M., Asahi, K.: Observation of iron impurity diffusion in silicon under bending stress by Mössbauer spectroscopy. Hyperfine Interact. 197, 213–217 (2010)

    Google Scholar 

  50. Yoshida, Y., Tsukamoto, Y., Ichino, M., Tanaka, K.: Direct observation of carrier trapping processes on Fe impurities in mc-Si solar cells. Solid State Phenom. 205–206, 40–46 (2014)

    Google Scholar 

  51. Tanaka, K., Watanabe, T., Uenoyama, T., Ino, Y., Yoshida, Y.: Search for FeB pairs in B-highly doped Si wafers by Mössbauer spectroscopy. In: Proceedings of the 7th Forum on the Science and Technology of Silicon Materials, 107–111 (2014)

    Google Scholar 

  52. Ino, Y., Tanaka, K., Yoshida, Y.: Direct observations of Fe impurities in Si with different Fermi levels by Mössbauer spectroscopy. Solid State Phenom. 242, 205–210 (2016)

    Google Scholar 

  53. Yoshida, Y., Ino, Y., Tanaka, K.: Mössbauer spectroscopy on Fe impurities in Si materials. Solid State Phenom. 242, 211–217 (2016)

    Google Scholar 

  54. Yoshida, Y., Suzuki, K., Hayakawa, K., Yukihira, K., Soejima, H.: Mössbauer spectroscopic microscope. Hyperfine Interact. 188, 121–126 (2009)

    Google Scholar 

  55. Yoshida, Y., Kamimura, T., Ichino, M., Hayakawa, K., Yukihira, K., Soejima, H.: Mössbauer spectroscopic microscope. J. Phys. Conf. Ser. 217, 012003–012004 (2010)

    Google Scholar 

  56. Yoshida, Y., Hayakawa, K., Yukihira, K., Ichino, M., Akiyama, Y., Kumabe, H., Soejima, H.: Development and applications of “Mössbauer cameras”. Hyperfine Interact. 198, 23–29 (2010)

    Google Scholar 

  57. Hayakawa, K., Tsukamoto, Y., Akiyama, Y., Kurata, M., Yukihira, K., Soejima, H., Yoshida, Y.: Deployment of system and technology for Mössbauer spectroscopic microscope. Hyperfine Interact. 206, 79–82 (2012)

    Google Scholar 

  58. Tanaka, K., Akiyama, Y., Hayakawa, K., Yukihira, K., Yoshida, Y.: Mapping analyses of Fe-diffused mc-Si using Mössbauer microscope and photo- luminescence. Hyperfine Interact. 206, 75–78 (2012)

    Google Scholar 

  59. Kamimura, T., Udono, H., Yoshida, Y.: not published (2008); Kaminura, T.: Master thesis, Shizuoka Institute of Science and Technology, Japan (2009)

    Google Scholar 

  60. Yoshida, Y., Ino, Y.: To be published (2015)

    Google Scholar 

  61. Kübler, J., Kumm, A.E., Overhof, H., Schwalbach, P., Hartick, M., Kankeleit, E., Keck, B., Wende, L., Sielemann, R.: Isomer-shift of interstitial and substitutional iron in silicon and germanium. Z. Phys. B 92, 155–162 (1993)

    Google Scholar 

  62. Coutinho, J.: Private communication (2015)

    Google Scholar 

  63. Estreicher, S.K., Sanati, M., Gonzalez Szwacki, N.: Iron in silicon: interactions with radiation defects, carbon, and oxygen. Phys. Rev. B 77, 125214–125219 (2008)

    Google Scholar 

  64. Backlund, D.J., Estreicher, S.K.: Ti, Fe and Ni in Si and their interactions with the vacancy and the A center: a theoretical study. Phys. Rev. B 81, 235213–235218 (2010)

    Google Scholar 

  65. Ziegler, J.F., Biersack, J.P.: In SRIM – The stopping and range of ions in solids, http://www.srim.org/ (2009)

  66. Dattagupta, S.: Time-dependent effects and relaxation in Mössbauer spectroscopy. In: Dickson, D.P.E., Berry, F. (eds.) Mössbauer Spectroscopy, pp. 198–218. Cambridge University Press, London (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Yoshida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Langouche, G., Yoshida, Y. (2015). Nuclear Methods to Study Defects and Impurities in Si Materials. In: Yoshida, Y., Langouche, G. (eds) Defects and Impurities in Silicon Materials. Lecture Notes in Physics, vol 916. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55800-2_8

Download citation

Publish with us

Policies and ethics