Skip to main content

Oxidative Stress and C. elegans Models

  • Chapter
Aging Mechanisms

Abstract

Oxidative stress is thought to be an important contributor to cellular and organismal aging. While there are many reports that support this notion, some recent evidence using transgenic animals indicates that oxidative defense systems, including antioxidant enzymes, may not affect life extension. This leads to speculation that oxidative stress does not play a major role in aging. However, it is difficult to ascertain the role of oxidative stress on aging under complex mechanisms of ROS production and the defense systems in normal cells that maintain a favorable redox balance. The nematode Caenorhabditis elegans has gained widespread favor for the study of many biological processes, including aging. Several lines of C. elegans research relating to oxidative stress and aging are discussed in this review, including the use of transgenic organisms with altered superoxide dismutase levels as well as studies that focus on mitochondrial mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abou-Sleiman PM, Muqit MM, Wood NW (2006) Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nat Rev Neurosci 7:207–219

    Article  CAS  PubMed  Google Scholar 

  • Adachi H, Fujiwara Y, Ishii N (1998) Effects of oxygen on protein carbonyl and aging in Caenorhabditis elegans mutants with long (age-1) and short (mev-1) life spans. J Gerontol A Biol Sci Med Sci 53:B240–B244

    Article  CAS  PubMed  Google Scholar 

  • Anderson WM, Trgovcich-Zacok D (1995) Carbocyanine dyes with long alkyl side-chains: broad spectrum inhibitors of mitochondrial electron transport chain activity. Biochem Pharmacol 49:1303–1131

    Article  CAS  PubMed  Google Scholar 

  • Attardi G, Schatz G (1988) Biogenesis of mitochondria. Annu Rev Cell Biol 4:289–333

    Article  CAS  PubMed  Google Scholar 

  • Back P, Braeckman BP, Matthijssens F (2012) ROS in aging Caenorhabditis elegans: damage or signaling? Oxidative Med Cell Longev. Vol 2012, Article ID 608478, p. 14

    Google Scholar 

  • Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cabreiro F, Ackerman D, Doonan R, Araiz C, Back P, Papp D, Braeckman BP, Gems D (2011) Increased life span from overexpression of superoxide dismutase in Caenorhabditis elegans is not caused by decreased oxidative damage. Free Radic Biol Med 51:1575–1582

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cecchini G (2003) Function and structure of complex II of the respiratory chain. Annu Rev Biochem 72:77–109

    Article  CAS  PubMed  Google Scholar 

  • Cecchini G, Maklashina E, Yankovskaya V, Iverson TM, Iwata S (2003) Variation in proton donor/acceptor pathways in succinate: quinone oxidoreductases. FEBS Lett 545:31–38

    Article  CAS  PubMed  Google Scholar 

  • Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–589

    CAS  PubMed  Google Scholar 

  • Clancy D, Birdsall J (2013) Flies, worms and the free radical theory of ageing. Ageing Res Rev 12:404–412

    Article  CAS  PubMed  Google Scholar 

  • Collins AR, Duthie SJ, Fillion L, Gedik CM, Vaughan N, Wood SG (1997) Oxidative DNA damage in human cells: the influence of antioxidants and DNA repair. Biochem Soc Trans 25:326–331

    Article  CAS  PubMed  Google Scholar 

  • Cross CE, Halliwell B, Borish ET, Pryor WA, Ames BN, Saul RL, McCord JM, Harman D (1987) Oxygen radicals and diseases. Ann Intern Med 107:526–545

    Article  CAS  PubMed  Google Scholar 

  • Cutler RG (1985) Antioxidants and longevity of mammalian species. In: Woodhead AD, Blackett AD, Hollaender A (eds) Molecular biology of aging. Plenum Press, New York/London, pp 15–73

    Chapter  Google Scholar 

  • Dillin A, Hsu AL, Arantes-Oliveira N, Lehrer-Graiwer J, Hsin H, Fraser AG, Kamath RS, Ahringer J, Kenyon C (2002) Rates of behavior and aging specific by mitochondrial function during development. Science 298:2398–2401

    Article  CAS  PubMed  Google Scholar 

  • Dingley S, Polyak E, Lightfoot R, Ostrovsky J, Rao M, Greco T, Ischiropoulos H, Falk MJ (2010) Mitochondrial respiratory chain dysfunction variably increases oxidant stress in Caenorhabditis elegans. Mitochondrion 10:125–136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Doonan R, McElwee JJ, Matthijssens F, Walker GA, Houthoofd K, Back P, Matscheski A, Vanfleteren JR, Gems D (2008) Against the oxidative damage theory of aging: superoxide dismutases protect against oxidative stress but have little or no effect on life span in Caenorhabditis elegans. Genes Dev 22:3236–3241

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Epstein HF, Shakes DC (1995) Methods in cell biology. Academic, San Diego

    Google Scholar 

  • Feng J, Bussiere F, Hekimi S (2001) Mitochondrial electron transport is a key determinant of life span in Caenorhabditis elegans. Dev Cell 1:633–644

    Article  CAS  PubMed  Google Scholar 

  • Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    Article  CAS  PubMed  Google Scholar 

  • Fraser AG, Kamath RS, Zipperlen P, Martinez-Campos M, Sohrmann M, Ahringer J (2000) Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408:325–330

    Article  CAS  PubMed  Google Scholar 

  • Gems D, Doonan R (2009) Antioxidant defense and aging in C. elegans: is the oxidative damage theory of aging wrong? Cell Cycle 8:1681–1697

    Article  CAS  PubMed  Google Scholar 

  • Guarente L, Kenyon C (2000) Genetic pathways that regulate ageing in model organisms. Nature 408:255–262

    Article  CAS  PubMed  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    Article  CAS  PubMed  Google Scholar 

  • Hartman PS, Ishii N, Kayser EB, Morgan PG, Sedensky MM (2001) Mitochondrial mutations differentially affect aging, mutability and anesthetic sensitivity in Caenorhabditis elegans. Mech Ageing Dev 122:1187–1201

    Article  CAS  PubMed  Google Scholar 

  • Holiday R (1997) Understanding aging. Philos Trans R Soc Lond B Biol Sci 352:1793–1797

    Article  Google Scholar 

  • Honda S, Ishii N, Suzuki K, Matsuo M (1993) Oxygen-dependent perturbation of life span and aging rate in the nematode. J Gerontol Ser A Biol Sci Med Sci 48:B57–B61

    CAS  Google Scholar 

  • Honda Y, Tanaka M, Honda S (2008) Modulation of longevity and diapause by redox regulation mechanisms under the insulin-like signaling control in Caenorhabditis elegans. Exp Gerontol 43:520–529

    Article  CAS  PubMed  Google Scholar 

  • Honda Y, Tanaka M, Honda S (2010) Redox regulation, gene expression and longevity. Geriatr Gerontol Int 10(Suppl 1):S59–S69

    Article  PubMed  Google Scholar 

  • Hosokawa H, Ishii N, Ishida H, Ichimori K, Nakazawa H, Suzuki K (1994) Rapid accumulation of fluorescent material with aging in an oxygen-sensitive mutant mev-1 of Caenorhabditis elegans. Mech Ageing Dev 74:161–170

    Article  CAS  PubMed  Google Scholar 

  • Houthoofd K, Vanfleteren JR (2007) Public and private mechanisms of life extension in Caenorhabditis elegans. Mol Genet Genomics 277:601–617

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Lemire BD (2009) Mutations in the C. elegans succinate dehydrogenase iron–sulfur subunit promote superoxide generation and premature aging. J Mol Biol 387:559–569

    Article  CAS  PubMed  Google Scholar 

  • Ishii N, Hartman PS (2003) Electron transport and life span in C. elegans. In: Mattson MP (ed) Energy metabolism and lifespan determination. Vol 14, Elsevier, Baltimore, pp 177–195

    Google Scholar 

  • Ishii N, Takahashi T, Tomita S, Keino T, Honda S, Yoshino K, Suzuki K (1990) A methyl viologen-sensitive mutant of the nematode Caenorhabditis elegans. Mutat Res 237:165–171

    Article  CAS  PubMed  Google Scholar 

  • Ishii N, Fujii M, Hartman PS, Tsuda M, Yasuda K, Senoo-Matsuda N, Yanase S, Ayusawa D, Suzuki K (1998) A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes. Nature 394:694–697

    Article  CAS  PubMed  Google Scholar 

  • Ishii N, Goto S, Hartman PS (2002) Protein oxidation during aging of the nematode Caenorhabditis elegans. Free Radic Biol Med 33:1021–1025

    Article  CAS  PubMed  Google Scholar 

  • Ishii N, Ishii T, Hartman PS (2006) The role of the electron transport gene SDHC on lifespan and cancer. Exp Gerontol 41:952–956

    Article  CAS  PubMed  Google Scholar 

  • Ishii T, Miyazawa M, Onouchi H, Yasuda K, Hartman PS, Ishii N (2013) Model animals for the study of oxidative stress from complex II. Biochim Biophys Acta 1827:588–597

    Article  CAS  PubMed  Google Scholar 

  • Jazwinski SM (1996) Longevity, genes, and aging. Science 273:54–59

    Article  CAS  PubMed  Google Scholar 

  • Kayser EB, Morgan PG, Sedensky MM (1999) GAS-1: a mitochondrial protein controls sensitivity to volatile anesthetics in the nematode Caenorhabditis elegans. Anesthesiology 90:545–554

    Article  CAS  PubMed  Google Scholar 

  • Kayser EB, Morgan PG, Hoppel CL, Sedensky MM (2001) Mitochondrial expression and function of GAS-1 in Caenorhabditis elegans. J Biol Chem 276:20551–20558

    Article  CAS  PubMed  Google Scholar 

  • Kenyon CJ (2010) The genetics of ageing. Nature 464:504–512

    Article  CAS  PubMed  Google Scholar 

  • Lakowski B, Hekimi S (1996) Determination of life-span in Caenorhabditis elegans by four clock genes. Science 272:1010–1013

    Article  CAS  PubMed  Google Scholar 

  • Larsen PL, Clarke CF (2002) Extension of life-span in Caenorhabditis elegans by a diet lacking coenzyme Q. Science 295:120–123

    Google Scholar 

  • Lee SS, Lee RYN, Fraser AG, Kamath RS, Ahringer J, Ruvkun G (2003) A systematic RNAi screening identifies a critical role for mitochondria in C. elegans longevity. Nat Genet 33:40–48

    Article  CAS  PubMed  Google Scholar 

  • Lenaz G (1998) Role of mitochondria in oxidative stress and ageing. Biochim Biophys Acta 1366:53–67

    Article  CAS  PubMed  Google Scholar 

  • Leonard JV, Schapira AH (2000) Mitochondrial respiratory chain disorders: I. mitochondrial DNA defects. Lancet 355:299–304

    Article  CAS  PubMed  Google Scholar 

  • Liochev SI (2013) Reactive oxygen species and the free radical theory of aging. Free Radic Biol Med 60:1–4

    Article  CAS  PubMed  Google Scholar 

  • Maklashina E, Cecchini G (2010) The quinone-binding and catalytic site of complex II. Biochim Biophys Acta 1797:1877–1882

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miyadera H, Amino H, Hiraishi A, Taka H, Murayama K, Miyoshi H, Sakamoto K, Ishii N, Hekimi S, Kita K (2001) Altered quinone biosynthesis in the long-lived clk-1 mutants of Caenorhabditis elegans. J Biol Chem 276:7713–7716

    Article  CAS  PubMed  Google Scholar 

  • Morgan PG, Sedensky MM (1994) Mutations conferring new patterns of sensitivity to volatile anesthetics in Caenorhabditis elegans. Anesthesiology 81:888–898

    Article  CAS  PubMed  Google Scholar 

  • Murfitt RR, Vogel K, Sanadi DR (1976) Characterization of the mitochondria of the free-living nematode, Caenorhabditis elegans. Comp Biochem Physiol B 53:423–430

    CAS  PubMed  Google Scholar 

  • Nohl H, Hegner D (1978) Do mitochondria produce oxygen radicals in vivo? Eur J Biochem 82:563–567

    Article  CAS  PubMed  Google Scholar 

  • Okimoto R, Macfarlane JL, Clary DO, Wolstenholme DR (1992) The mitochondrial genomes of two nematodes, Caenorhabditis elegans and Ascaris suum. Genetics 130:471–498

    PubMed Central  CAS  PubMed  Google Scholar 

  • Orr WC, Sohal RS (1994) Extension of life span by over expression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263:1128–1130

    Article  CAS  PubMed  Google Scholar 

  • Raamsdonk JM, Van Hekimi S (2009) Deletion of the mitochondrial superoxide dismutase sod-2 extends lifespan in Caenorhabditis elegans. PLoS Genet 5(2), e1000361

    Article  PubMed Central  PubMed  Google Scholar 

  • Raha S, Robinson BH (2000) Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem Sci 25:502–508

    Article  CAS  PubMed  Google Scholar 

  • Rajendran P, Nandakumar N, Rengarajan T, Palaniswami R, Gnanadhas EN, Lakshminarasaiah U, Gopas J, Nishigaki I (2014) Antioxidants and human diseases. Clin Chim Acta 436:332–347

    Article  CAS  PubMed  Google Scholar 

  • Reddy PH, Beal MF (2005) Are mitochondria critical in the pathogenesis of Alzheimer’s disease? Brain Res Rev 49:618–632

    Article  CAS  PubMed  Google Scholar 

  • Riddle DL, Blumenthal T, Mayer BJ, Priess JR (1997) C. elegans II. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Senoo-Matsuda N, Yasuda K, Tsuda M, Ohkubo T, Yoshimura S, Nakazawa H, Hartman PS, Ishii N (2001) A defect in the cytochrome b large subunit in complex II causes both superoxide anion overproduction and abnormal energy metabolism in Caenorhabditis elegans. J Biol Chem 276:41553–41558

    Article  CAS  PubMed  Google Scholar 

  • Senoo-Matsuda N, Hartman PS, Akatsuka A, Yoshimura S, Ishii N (2003) A complex II defect affects mitochondrial structure, leading to ced-3- and ced-4-dependent apoptosis and aging. J Biol Chem 278:22031–22036

    Article  CAS  PubMed  Google Scholar 

  • Spoerri PE, Glass P, Ghazzawi PE (1974) Accumulation of lipofuscin in the myocardium of senile guinia pigs; dissolution and removal of lipofuscin following dimethylaminoethyl p-chloroohenoxyacetate administration. An electron microscopy study. Mech Ageing Dev 3:311–321

    Article  CAS  PubMed  Google Scholar 

  • Stadman ER (1992) Protein oxidation and aging. Science 257:1220–1224

    Article  Google Scholar 

  • Stadman ER, Oliver CN (1991) Metal-catalyzed oxidation of proteins. J Biol Chem 266:2005–2008

    Google Scholar 

  • Strehler BL, Mark DD, Mildvan AS, Gee MV (1959) Rate and magnitude of age pigment accumulation in the human myocardium. J Gerontol 14:257–264

    Article  Google Scholar 

  • Sulston JE (1988) Cell lineage. In: Wood WB (ed) The nematode Caenorhabditis elegans. Cold Spring Harbor Laboratory, New York, pp 123–155

    Google Scholar 

  • Sulston JE, Horvitz HR (1977) Post embryonic cell lineages of the nematode Caenorhabditis elegans. Dev Biol 56:110–156

    Article  CAS  PubMed  Google Scholar 

  • Sulston JE, Schiernberg E, White JG, Thomson JN (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100:64–119

    Article  CAS  PubMed  Google Scholar 

  • Tahara EB, Navarete FDT, Kowaltowski AJ (2009) Tissue-, substrate-, and site-specific characteristics of mitochondrial reactive oxygen species generation. Free Radic Biol Med 46:1283–1297

    Article  CAS  PubMed  Google Scholar 

  • Tolmasoff JM, Ono T, Cutler RG (1980) Superoxide dismutase: correlation with life-span and specific metabolic rate in primate species. Proc Natl Acad Sci 77:2777–2781

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Turrens JF (1997) Superoxide production by the mitochondrial respiratory chain. Biosci Rep 17:3–8

    Article  CAS  PubMed  Google Scholar 

  • Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40

    Article  CAS  PubMed  Google Scholar 

  • Vuillaume M (1987) Reduced oxygen species, mutation, induction and cancer initiation. Mutat Res 186:43–72

    Article  CAS  PubMed  Google Scholar 

  • Wallace DC (1999) Mitochondrial diseases in man and mouse. Science 283:1482–1488

    Article  CAS  PubMed  Google Scholar 

  • Wood WB (1988a) Embryology. In: Wood WB (ed) The nematode Caenorhabditis elegans. Cold Spring Harbor Laboratory, New York, pp 215–241

    Google Scholar 

  • Wood WB (1988b) Aging of C. elegans: mosaics and mechanisms. Cell 95:147–150

    Article  Google Scholar 

  • Xu X, Matsuno-Yagi A, Yagi T (1992) Gene cluster of the energy-transducing NADH-quinone oxidoreductase of Paracoccus denitrificans: characterization of four structural gene products. Biochemistry 31:6925–6932

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Hekimi S (2010) A mitochondrial superoxide signal triggers increased longevity in Caenorhabditis elegans. PLoS Biol 8(12), e1000556

    Article  PubMed Central  PubMed  Google Scholar 

  • Yang W, Li JJ, Hekimi S (2007) A measurable increase in oxidative damage due to reduction in superoxide detoxification fails to shorten the life span of long-lived mitochondrial mutants of Caenorhabditis elegans. Genetics 177:2063–2074

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yen K, Patel HB, Lublin AL, Mobbs CV (2009) SOD isoforms play no role in lifespan in ad lib or dietary restricted conditions, butmutational inactivation of SOD-1 reduces life extension by cold. Mech Ageing Dev 130:173–178

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoaki Ishii .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Ishii, N., Ishii, T., Hartman, P.S. (2015). Oxidative Stress and C. elegans Models. In: Mori, N., Mook-Jung, I. (eds) Aging Mechanisms. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55763-0_7

Download citation

Publish with us

Policies and ethics