Skip to main content

Bioimaging of Fluorescence-Labeled Mitochondria in Subcutaneously Grafted Murine Melanoma Cells by the “In Vivo Cryotechnique”

  • Chapter
In Vivo Cryotechnique in Biomedical Research and Application for Bioimaging of Living Animal Organs

Abstract

Mitochondrial functions play important roles in metabolism of cancer cells and are affected by the microenvironment including blood circulation. To overcome the technical artifacts of conventional fixation and dehydration methods, the in vivo cryotechnique (IVCT) was combined with fluorescent protein expression and used to examine the distribution of mitochondria in tumor tissues obtained from melanoma-grafted mice. Quick-freezing followed by freeze-substitution (FS) could well retain the fluorescence intensity of fluorescent proteins including mitochondria-targeted DsRed2 (mitoDsRed) in cultured B16-BL6 cells. In the subcutaneous tumor tissues produced by injection of mitoDsRed-expressing B16-BL6 cells, the melanoma cells scattering throughout the tumor tissues prepared with IVCT followed by FS had clear fluorescence of mitoDsRed, and individual tumor cells expressing hypoxia markers, including carbonic anhydrase IX and hypoxia-inducible factor-1α, had decreased volume of mitoDsRed. The cytoplasm and processes of the cancer cells extended along the collagen type IV-immunopositive basement membranes and often contained mitoDsRed. Combination of fluorescent protein expression and IVCT would be a powerful tool to examine cells and organelles with fluorescent protein expression along with histochemical/immunohistochemical labelings. Furthermore, the results suggest that mitochondrial volume and distribution could be modulated by the hypoxic microenvironment and attachment to basement membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schulze A, Harris AL (2012) How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature 491(7424):364–373

    Article  CAS  PubMed  Google Scholar 

  2. Junttila MR, de Sauvage FJ (2013) Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501(7467):346–354

    Article  CAS  PubMed  Google Scholar 

  3. Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Arismendi-Morillo G (2009) Electron microscopy morphology of the mitochondrial network in human cancer. Int J Biochem Cell Biol 41(10):2062–2068

    Article  CAS  PubMed  Google Scholar 

  5. Semenza GL (2009) Regulation of cancer cell metabolism by hypoxia-inducible factor 1. Semin Cancer Biol 19(1):12–16

    Article  CAS  PubMed  Google Scholar 

  6. Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125(7):1241–1252

    Article  CAS  PubMed  Google Scholar 

  7. Nunnari J, Suomalainen A (2012) Mitochondria: in sickness and in health. Cell 148(6):1145–1159

    Article  CAS  PubMed  Google Scholar 

  8. Hayat MA (2000) Principles and techniques of electron microscopy. Cambridge University Press, Cambridge

    Google Scholar 

  9. Ohno N, Terada N, Saitoh S, Ohno S (2007) Extracellular space in mouse cerebellar cortex revealed by in vivo cryotechnique. J Comp Neurol 505(3):292–301

    Article  PubMed  Google Scholar 

  10. Ohno S, Terada N, Fujii Y, Ueda H, Takayama I (1996) Dynamic structure of glomerular capillary loop as revealed by an in vivo cryotechnique. Virchows Arch 427(5):519–527

    Article  CAS  PubMed  Google Scholar 

  11. Huang Z, Ohno N, Terada N, Saitoh Y, Chen J, Ohno S (2013) Immunohistochemical detection of angiotensin II receptors in mouse cerebellum and adrenal gland using “in vivo cryotechnique”. Histochem Cell Biol 140(4):477–490

    Article  CAS  PubMed  Google Scholar 

  12. Terada N, Ohno N, Li Z, Fujii Y, Baba T, Ohno S (2005) Detection of injected fluorescence-conjugated IgG in living mouse organs using “in vivo cryotechnique” with freeze-substitution. Microsc Res Tech 66(4):173–178

    Article  CAS  PubMed  Google Scholar 

  13. Terada N, Ohno N, Saitoh S, Saitoh Y, Ohno S (2009) Immunoreactivity of glutamate in mouse retina inner segment of photoreceptors with in vivo cryotechnique. J Histochem Cytochem 57(9):883–888

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Terada N, Saitoh Y, Saitoh S, Ohno N, Jin T, Ohno S (2010) Visualization of microvascular blood flow in mouse kidney and spleen by quantum dot injection with “in vivo cryotechnique”. Microvasc Res 80(3):491–498

    Article  PubMed  Google Scholar 

  15. Zea-Aragon Z, Terada N, Ohno N, Fujii Y, Baba T, Ohno S (2004) Effects of anoxia on serum immunoglobulin and albumin leakage through blood–brain barrier in mouse cerebellum as revealed by cryotechniques. J Neurosci Methods 138(1–2):89–95

    Article  CAS  PubMed  Google Scholar 

  16. Bai Y, Ohno N, Terada N, Saitoh S, Nakazawa T, Nakamura N et al (2009) Immunolocalization of serum proteins in xenografted mouse model of human tumor cells by various cryotechniques. Histol Histopathol 24(6):717–728

    CAS  PubMed  Google Scholar 

  17. Ohno N, Terada N, Bai Y, Saitoh S, Nakazawa T, Nakamura N et al (2008) Application of cryobiopsy to morphological and immunohistochemical analyses of xenografted human lung cancer tissues and functional blood vessels. Cancer 113(5):1068–1079

    Article  PubMed  Google Scholar 

  18. Lei T, Huang Z, Ohno N, Wu B, Sakoh T, Saitoh Y et al (2014) Bioimaging of fluorescence-labeled mitochondria in subcutaneously grafted murine melanoma cells by the “in vivo cryotechnique”. J Histochem Cytochem 62(4):251–264

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Migneault I, Dartiguenave C, Bertrand MJ, Waldron KC (2004) Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques 37(5):790–796, 8–802

    CAS  PubMed  Google Scholar 

  20. Nixon SJ, Webb RI, Floetenmeyer M, Schieber N, Lo HP, Parton RG (2009) A single method for cryofixation and correlative light, electron microscopy and tomography of zebrafish embryos. Traffic 10(2):131–136

    Article  CAS  PubMed  Google Scholar 

  21. Rizzuto R, Brini M, Pizzo P, Murgia M, Pozzan T (1995) Chimeric green fluorescent protein as a tool for visualizing subcellular organelles in living cells. Curr Biol 5(6):635–642

    Article  CAS  PubMed  Google Scholar 

  22. Kaluz S, Kaluzova M, Stanbridge EJ (2003) Expression of the hypoxia marker carbonic anhydrase IX is critically dependent on SP1 activity. Identification of a novel type of hypoxia-responsive enhancer. Cancer Res 63(5):917–922

    CAS  PubMed  Google Scholar 

  23. Loncaster JA, Harris AL, Davidson SE, Logue JP, Hunter RD, Wycoff CC et al (2001) Carbonic anhydrase (CA IX) expression, a potential new intrinsic marker of hypoxia: correlations with tumor oxygen measurements and prognosis in locally advanced carcinoma of the cervix. Cancer Res 61(17):6394–6399

    CAS  PubMed  Google Scholar 

  24. Sobhanifar S, Aquino-Parsons C, Stanbridge EJ, Olive P (2005) Reduced expression of hypoxia-inducible factor-1alpha in perinecrotic regions of solid tumors. Cancer Res 65(16):7259–7266

    Article  CAS  PubMed  Google Scholar 

  25. Gogvadze V, Orrenius S, Zhivotovsky B (2008) Mitochondria in cancer cells: what is so special about them? Trends Cell Biol 18(4):165–173

    Article  CAS  PubMed  Google Scholar 

  26. Sutphin PD, Giaccia AJ, Chan DA (2007) Energy regulation: HIF MXIes it up with the C-MYC powerhouse. Dev Cell 12(6):845–846

    Article  CAS  PubMed  Google Scholar 

  27. Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB et al (2008) Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283(16):10892–10903

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Egeblad M, Rasch MG, Weaver VM (2010) Dynamic interplay between the collagen scaffold and tumor evolution. Curr Opin Cell Biol 22(5):697–706

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Friedl P, Alexander S (2011) Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 147(5):992–1009

    Article  CAS  PubMed  Google Scholar 

  30. Macaskill AF, Rinholm JE, Twelvetrees AE, Arancibia-Carcamo IL, Muir J, Fransson A et al (2009) Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron 61(4):541–555

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Quintana A, Schwindling C, Wenning AS, Becherer U, Rettig J, Schwarz EC et al (2007) T cell activation requires mitochondrial translocation to the immunological synapse. Proc Natl Acad Sci U S A 104(36):14418–14423

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Chada SR, Hollenbeck PJ (2004) Nerve growth factor signaling regulates motility and docking of axonal mitochondria. Curr Biol 14(14):1272–1276

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuhiko Ohno M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Ohno, N., Lei, T., Huang, Z., Sakoh, T., Saitoh, Y., Ohno, S. (2016). Bioimaging of Fluorescence-Labeled Mitochondria in Subcutaneously Grafted Murine Melanoma Cells by the “In Vivo Cryotechnique”. In: Ohno, S., Ohno, N., Terada, N. (eds) In Vivo Cryotechnique in Biomedical Research and Application for Bioimaging of Living Animal Organs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55723-4_52

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55723-4_52

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55722-7

  • Online ISBN: 978-4-431-55723-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics